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Electrodermal  Activity  (EDA)  −  an  index  of sympathetic  nervous  system  arousal  −  is  one of  the  primary
methods  used  in  psychophysiology  to assess  the  autonomic  nervous  system  [1].  While  many  studies  col-
lect EDA  data  in  short,  laboratory-based  experiments,  recent  developments  in wireless  biosensing  have
enabled  longer,  ‘out-of-lab’  ambulatory  studies  to become  more  common  [2].  Such  ambulatory  methods
are beneficial  in  that  they  facilitate  more  longitudinal  and  environmentally  diverse  EDA  data  collection.
However,  they  also  introduce  challenges  for  efficiently  and accurately  identifying  discrete  skin  conduc-
tance responses  (SCRs)  and  measurement  artifacts,  which  complicate  analyses  of ambulatory  EDA data.
Therefore,  interest  in developing  automated  systems  that  facilitate  analysis  of EDA  signals  has  increased
in  recent  years.  Ledalab  is one  such  system  that  automatically  identifies  SCRs  and  is currently  considered
a  gold  standard  in  the field  of ambulatory  EDA  recording.  However,  Ledalab,  like other  current  systems,
cannot  distinguish  between  SCRs  and  artifacts.  The  present  manuscript  describes  a  novel  technique  to
accurately  and  efficiently  identify  SCRs  and  artifacts  using  curve  fitting  and  sparse  recovery  methods
We  show  that  our  novel  approach,  when  applied  to expertly  labeled  EDA  data,  detected  69%  of the  total

labeled  SCRs  in  an  EDA  signal  compared  to 45%  detection  ability  of  Ledalab.  Additionally,  we demonstrate
that our  system  can distinguish  between  artifact  and  SCR  shapes  with  an  accuracy  of  74%.  This  work,  along
with our  previous  work  [3], suggests  that  matching  pursuit  is  a viable  methodology  to  quickly  and  accu-
rately  identify  SCRs  in ambulatory  collected  EDA  data,  and  that  artifact  shapes  can  be  separated  from  SCR
shapes.

© 2017  Elsevier  Ltd.  All  rights  reserved.
. Introduction

Electrodermal Activity (EDA) − an index of sympathetic ner-
ous system activity − is one of the primary methods employed
n psychophysiological research [4] and is widely used to quantify
utonomic and psychological arousal [5]. Formally, EDA is a mea-
ure of electrical conductance on the skin surface, which changes as
weat is released by eccrine sweat glands [6]. Fluctuations in skin
onductance are linked to a specific set of brain circuitry [7], and

an be used to reveal when psychologically salient events occur.
sing this link, EDA has been widely employed to investigate a vari-

∗ Corresponding author.
E-mail address: mak341@pitt.edu (M.  Kelsey).

ttp://dx.doi.org/10.1016/j.bspc.2017.08.024
746-8094/© 2017 Elsevier Ltd. All rights reserved.
ety of psychological states, including stress, depression, anxiety,
attention, pain, and information processing [8,9,1].

EDA signals are traditionally separated into three distinct com-
ponents: skin conductance level (SCL); skin conductance response
(SCR); and artifacts. SCL, or tonic response, is a slowly fluctuating
response that typically ranges between 2 and 20 �S and reflects
general trends in level of activation. It is common to remove the
tonic level from an EDA signal during analyses given that 1) it is less
clear how psychological events relate to tonic changes [1] and 2)
EDA baselines are rarely consistent within or between individuals
due to hydration status, recording site, eccrine sweat gland density
at site of recording, and psychological state [1]. In contrast, SCRs
are quick responses superimposed on the tonic response that can

be more directly linked to psychological events [10]. SCRs typically
have a predictable shape that can be characterized by rise time,
amplitude, and half recovery time. In healthy adults, rise time is

dx.doi.org/10.1016/j.bspc.2017.08.024
http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2017.08.024&domain=pdf
mailto:mak341@pitt.edu
dx.doi.org/10.1016/j.bspc.2017.08.024
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or touching the recording sensor [19]. Not being robust to these
Fig. 1. Parameters used to characterize SCRs.

sually between 1 and 3 s, amplitude often varies, but a minimum
s commonly set between 0.01 and 0.05 �S, and half recovery time is
ypically between 2 and 10 s [1]. Fig. 1 shows the typical shape and
arameters that can be used to describe an SCR. A complicating fac-
or occurs when a second SCR is elicited before the previous SCR has
ully recovered. This case, referred to as compound SCRs, indicates
hat two separate stimuli or psychologically different events have
ccurred [11]. As compound SCRs may  be caused by different stim-
li, accurate identification of each SCR is important during analysis.
inally, a common feature in EDA data are artifacts resulting from
ontact changes (i.e., increased or decreased pressure of the senor
n the skin), wearer movement, shifts in ambient environmental
emperature, or electrical interference. While the curvature of an
rtifact can vary widely, they are often, and problematically, sim-
lar in shape and phase to SCRs. Due to this similarity between
rtifacts and SCRs, identifying artifacts using current practices is

 challenging and manually intensive endeavor.
Until the early 2000s, most studies employing EDA were

estricted to short-term assessments in laboratory settings [9].
he recent advent and wider availability of ambulatory recording
evices has made it increasingly feasible to gather EDA longitu-
inally in daily life, opening the exciting possibility of evaluating
nique variance across time-scales and settings. For example, a
tudy investigating panic disorders found that SCL trends in par-
icipants with panic disorders were significantly elevated during
onger ambulatory recordings than in shorter-term assessments in

 laboratory setting [12]. While advances in wireless biosensing
ave allowed for more studies to be conducted in ambulatory set-
ings, the challenges associated with artifact detection and robust
CR identification have hindered efficient and accurate analyses of
hese signals [9].

To further the utility of ambulatory EDA data, the current
anuscript presents a novel strategy for automatically identifying

CRs and removing artifacts. We  present the performance of our
ethods compared to expert manually labeled EDA data. EDA data

sed for testing was acquired from 55 healthy participants in a lab
etting in response to a standardized set of evocative photos. While
e will ultimately apply our novel approach to ambulatory data,

sing data collected in a lab setting provided two major benefits: 1)
sing standardized evocative photos as a stimulus is a well-studied
nd widely used approach to elicit SCRs and 2) expert human coders
rovided labels, coded from videos, for the responses enabling a
round truth with which to compare our method’s performance.
sing the expert labels as ground truth, we evaluated our method’s

ccuracy in automatically identifying SCRs compared to a current
old-standard software, Ledalab. We  also report the separability
etween SCR and artifact shape as a first step towards moving our
sing and Control 40 (2018) 58–70 59

method to ambulatory collected EDA data. Finally, we present the
possible directions this work could take in the future work section.

1.1. Current analysis methods

1.1.1. SCR detection
Traditionally, EDA signals are analyzed by hand, and, in fact, the

Society for Psychophysiological Research still recommends manual
analysis for identifying SCR locations and removing artifacts [11].
However, manual analysis is time-consuming and prone to human
error and inconsistency. As a first step towards more automated
analysis methods, many groups have developed different models
to represent the shape of an SCR. A popular model used in several
recent studies is the Bateman equation:

b (t) = e
−t
�2 + e

−t
�1 (1)

In (1), t is time and �1and �2 are parameters that characterize
the shape of the function. The Bateman function is characterized
by a steep onset followed by a slow recovery period, controlled
by �1 and �2 respectively [4]. Because the Bateman equation
relies on only two  parameters, minimal computation complexity
is required to estimate optimal parameters and fit to an SCR, mak-
ing it ideal for different SCR detection software [10], [13]. Using
this model as the basis for an SCR shape, several groups have cre-
ated software capable of analyzing EDA data and determining the
location of SCRs; however, most of these methods were developed
for short, laboratory-based studies and have not been optimized
for longer ambulatory recordings [14]. Model-based approaches
employ psychophysiological assumptions to develop mathematical
models describing how an underlying process generates observed
data [14]. Two model-based systems currently considered gold-
standard for EDA analysis are SCRalyze and Ledalab [15,16].
However, while both systems have been shown to perform well
when analyzing EDA signals collected in the lab, they may not per-
form well with ambulatory signals [15,17,16]. One of the major
drawbacks of SCRalyze is that it relies on convolution with a driver
function to locate SCRs in the signal before employing probabilistic
inversion to estimate the parameters of the SCRs. This convolu-
tion and subsequent estimation relies on prior knowledge about
the location of a stimulus or event that evoked an SCR [15], [14].
When this prior knowledge is unknown, for instance when EDA
is collected outside of a controlled laboratory setting, these sys-
tems may not accurately locate SCRs. For further details the reader
is referred to the original papers [15,17,18]. Similar to SCRalyze,
Ledalab uses the Bateman equation as an impulse response that,
when deconvolved with the signal, is used to identify the onsets
of individual SCRs. To improve goodness of fit, Ledalab uses gradi-
ent descent to optimize the �1and �2 parameters to better fit SCRs
found across the signal [16]. Ledalab is slow due to its optimization
process and not robust to artifacts, making it difficult to scale to
longer and more artifact-laden ambulatory signals.

Another interesting automated SCR identification approach
recently proposed is convex optimization. Convex optimization
allows the problem to be solved efficiently using a sparse QP-
solver [19]. While the algorithm appears conceptually promising,
in-depth quantitative analyses of its performance is currently based
on simulated data, while only an observatory analysis is provided
for the SCR detection with real data [19]. Because a full quantitative
analysis of non-simulated data is not provided, a true comparison
between this method and our novel approach is not possible at
this time. Additionally, this algorithm only considers noise as iid
white Gaussian but does not consider artifacts caused by movement
types of artifacts could degrade the performance of this algorithm
if applied to ambulatory data and make it difficult to successfully
scale analysis for ambulatory data.
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To move towards a more scalable and robust solution for
utomatically identifying SCRs in ambulatory EDA signals, sparse
ecovery methods have been proposed and shown to be a promis-
ng solution [20]. In a comparison paper evaluating SCRalyze and
edalab, it was shown that SCRalyze performed better in event
riven analysis [14]. However, as discussed above, SCRalyze does
ot allow for analysis of signals without labeled events, as Ledalab
oes. For this reason, we compare our novel approach to Ledalab
nly.

.1.2. Sparse recovery methods
Sparse recovery is a technique that can be used to estimate a

ignal by linearly adding columns from a dictionary of predefined
aveforms usingD� = x (2). In (2), D is the dictionary, � is the coef-
cient matrix that gives the weight of the selected atoms, and x is

he original signal [21]. Typical dictionaries are represented using a
atrix built up of individual columns, commonly called atoms, each

epresenting a specific waveform. While there are many standard
ictionaries with predefined waveforms, most applications build

 dictionary containing application-specific atoms to better rep-
esent the original signal [22]. Dictionaries are typically designed
o be fat matrices, meaning a single exact solution does not exist.
nstead, greedy approaches are used which allow Eq. (2) to be solved
s an approximation [21]. The most popular greedy approaches fall
nder the category of Matching Pursuit (MP) algorithms, which

ollow the same basic algorithm with slight variations. To create
n estimate of the original signal, MP  algorithms aim to solve the
ptimization problem with:

 = Argmin
�

‖�‖
0

Subject To‖x − D�‖ 2

2
≤ � (3)

n (3), � is the estimated coefficient vector, x is the original signal,
nd D is the dictionary. Additionally, D� is an estimated representa-
ion of the original signal [22]. As a greedy approach, MP  algorithms
olve the optimization equation through a series of iterative steps
hat can be generalized to two main steps: 1) atom selection and
) residual update. First, the atom with the highest correlation to
he current residual error is selected. Then the residual error is
pdated to reflect the newly selected atom [21]. One methodology
hat improves upon the traditional MP  algorithm is the orthogonal

atching pursuit algorithm (OMP). This procedure introduces an
rthogonalization step between the atom selection and the residual
pdate steps. After an atom is selected, the OMP  algorithm projects
hat atom into an orthogonal space; this reduces run time of the
lgorithm and enforces better sparsity of the estimate.

It has been shown that OMP  is a useful MP  algorithm for EDA
nalysis [20], wherein a knowledge-driven dictionary achieves
ood fit to lab-collected EDA signals with high accuracy [20]. This
ethod also enables the ability to identify SCRs in the signal using

he OMP  methodology, with a dictionary made up of columns to
epresent both tonic and phasic components, and some post pro-
essing of the selected atoms. While this study showed that OMP
ith a knowledge-driven dictionary could be efficiently used to
odel EDA signals and detect SCRs, it did not address: 1) the com-

utational complexity or run time required for the design; 2) use
f a data-driven or learned dictionary, although the possibility of
sing this type of dictionary was discussed; 3) a comparison with
xisting gold standard software, including fully reporting on the
erformance measures achieved by the OMP  methodology; or 4)
rtifact detection. Additionally, the study did not evaluate the effect
f removing tonic level, which could impact overall performance.

onic level is much more variable than phasic responses [1], mean-

ng they can make dictionaries more difficult to generalize to new
ata. They also significantly increase the size of a required dictio-
ary, increasing computational complexity and run time.
sing and Control 40 (2018) 58–70

In our previous work, we showed that a similar OMP  method-
ology could be extended to an ambulatory EDA signal with high
accuracy when compared to labels generated from Ledalab [3].
This previous work was a proof-of-concept test demonstrating that
OMP  could be successfully extended to ambulatory EDA signals
with mean accuracy of 80%, and sensitivity and specificity of 90%
and 53%, respectively. Additionally, this previous work showed
that OMP  significantly reduced run time for analysis compared
to Ledalab [3]. With mean recording lengths of a little over 3 h,
the proposed method had about an 81% decrease in run time over
Ledalab.

1.1.3. Artifact detection
For most studies involving EDA data, artifacts are removed

either by applying exponential smoothing or through low-pass
filtering [23]. While these approaches often work well for minor
artifacts, high magnitude or long duration artifacts are not effec-
tively removed using either of these methods [23]. Other traditional
methods for artifact detection require either manual inspection of
the data after some processing, which is time consuming and prone
to subjective interpretations, or through collection of EDA  from
multiple sites simultaneously (such as the ankle and wrist), which
may  not be possible in ambulatory settings [23–25]. As experi-
ments shift to more ambulatory data collection, the potential for
high magnitude artifacts increases due to factors including, but not
limited to, participant movement and participants or other objects
bumping into the sensor. A recent study attempted to address
these issues and find more robust ways to identify artifacts using
machine learning techniques [23]. It was found that Support Vector
Machines (SVM) with a radial basis function was successfully able
to distinguish between clean and noisy sections of data with test
accuracies of about 96%. While this method addresses the issue
of missing high magnitude artifacts, it performs classification by
looking at sections of data instead of classifying individual SCRs or
artifacts. Potential issues with sectioning the data in this way  are
three-fold: 1) If there are multiple responses in a section (including
SCRs and artifacts) there is no way to classify the responses individ-
ually; 2) they can miss responses if an SCR or artifact is compounded
falls between two sections (i.e., the onset of an SCR is at the end of
one section and recovery is in the beginning of the next), depending
on how sectioning is handled; and 3) simply identifying sections of
noisy data may  still require manual cleaning before further analysis
can be completed.

1.2. Our contribution

In previous work, we  showed that our methodology could be
successfully used to automatically identify SCRs in ambulatory EDA
data with low computational complexity. The current work aims to
fully present the performance of our methodology when applied to
expert human labeled data. Expanding on the methodologies intro-
duced previously [3], our contributions in the present manuscript
are four-fold:

1) Demonstrate that an expanded data driven dictionary improves
performance of SCR identification over a knowledge-driven dic-
tionary.

2) Investigate the removal of tonic level using different techniques,
and compare our estimation to Ledalab’s.

3) Report on Ledalab’s performance measures − which to our

knowledge, has yet to be done − and compare it to our method’s
performance.

4) Investigate classification accuracy between artifacts and SCRs
using the Bateman equation parameters as features



Proces

t
i
h
o
a
t
a
y
a

2

2

2

f
f
a
t
r
c
i
c
T
w

2

d
P
i
s
t
a
P
s
t
w
C
a
p
f
r
B
A
i
q
p
a
(

r
n
t
a
w
s
r
o
a
a
i
b

M. Kelsey et al. / Biomedical Signal 

In the present study, we analyze laboratory EDA data from par-
icipants viewing a series of standardized and normed evocative
mages that induce a range of autonomic responses. Using expert
uman labeled SCRs and artifacts as ground truth, we  show that
ur proposed method, including a tonic estimation that employs

 low pass filter with 1 Hz cutoff frequency, allowed us to iden-
ify SCRs with an accuracy of about 69%, sensitivity of about 69%,
nd specificity of about 71%. Additionally, using discriminant anal-
sis classification allowed us to classify artifacts from SCRs with an
ccuracy of about 74%.

. Methods

.1. Experimental data

.1.1. Participants
Data were collected at Northeastern University (Boston, MA)

rom 2013 to 2014 and included 73 healthy participants (35
emales) recruited from Northeastern University and the Boston
rea. Seven participants’ data were not included in this study,
hree because data were lost due to technical malfunctions and the
emaining 4 stopping the study early due to lack of interest or lack of
ompliance with study instructions. Out of the remaining 66 partic-
pants, EDA data from 11 participants were not annotated due to a
omputer technical malfunction or human-based computer error.
hus, our final dataset consisted of 55 participants (24 females)
ith age ranging from 18 − 38 years (M ± SD = 24.3 ± 5.5 years).

.1.2. Procedure
Participants were greeted and consent was obtained in accor-

ance with Northeastern University’s Institutional Review Board.
articipants completed a health questionnaire asking about their

ntake of caffeine, alcohol, and medications, whether they were
uffering from any illnesses, and the amount of time they slept
he prior night. Participants were asked to abstain from caffeine,
lcohol, and recreational drugs for the 12 h leading up to the study.
articipants who were too ill to perform the study tasks (e.g., sitting
till and not coughing during physiological recording) were asked
o come back to the lab when healthy. Participants’ height and
eight were measured. Participants were fitted with pre-gelled

onMed (Westborough, MA)  Cleartrace Ag/AgCl sensors to obtain
 modified lead II ECG, a respiration belt, impedance cardiogra-
hy sensors, and electrodermal activity sensors (only data captured

rom this device is analyzed in the present study) on the palm of the
ight hand. Physiological channels were sampled at 1000 Hz using
ioLab v. 3.0.8-3.0.13 (Mindware Technologies LTD; Gahanna, OH).
fter connecting to the physiological recording equipment, partic-

pants sat quietly for 2–10 min  while completing a demographics
uestionnaire and the PANAS-X questionnaire [26]. Next, partici-
ants completed a five-minute baseline period wherein they were
sked to sit still. They then completed a heartbeat detection task
data reported previously in [27]).

Next, participants completed a task viewing and providing
atings in response to each of 103 full-color photos from the Inter-
ational Affective Picture System (IAPS), which are commonly used
o reliably and validly induce various autonomic responses and
ffective experiences [28]. Per IAPS instructions [28], participants
ere informed to remain still during the task, to immerse them-

elves in the experience of each photo, and to rate how they feel in
esponse to each photo. The particular photos were selected based
n normative ratings of pleasantness/unpleasantness (valence) and

rousal experienced when viewing them (all IAPS photo numbers
re shown in Table A1 in the Appendix A). Photos were separated
nto an initial “anchor” block of 3 photos, and then 10 additional
locks of 10 photos each: 2 blocks of unpleasant-high arousal, 2
sing and Control 40 (2018) 58–70 61

blocks of pleasant-high arousal, 2 blocks of unpleasant-low arousal,
2 blocks of pleasant-low arousal, and 2 blocks of pleasant or neu-
tral valence-low arousal. Participants viewed all instructions and
photos sequentially on a high definition television screen two
meters away while seated. The blocks were presented in a counter-
balanced order, always starting with the anchor block, to familiarize
participants with the task [28]. Next, either the unpleasant high
arousal block or the pleasant high arousal block was displayed,
with subsequent images alternating between unpleasant, neutral,
and pleasant blocks. The order of the photos within each block was
randomized within participants. This task was implemented using
BioLab v. 3.0.8-3.0.13 and an in-house MATLAB program (Math-
works, Natick, MA)  that utilized PsychoPhysics Toolbox extensions
[29–31].

For each of the 103 trials, participants first viewed a screen indi-
cating they are free to move if desired (e.g., stretch, adjust posture).
Then, upon pressing the mouse button, they viewed a “get ready”
screen for 3–8 s indicating that the picture was about to be shown.
They then they viewed the picture for six seconds and rated their
response to the picture in terms of 1) valence using a continuous
scale with nine anchor images from the self-assessment manikin
scale (SAM [32]); 2) arousal using a continuous scale with nine
anchor images from the SAM; and 3) confidence in their responses
using a continuous scale anchored from “least confident” to “most
confident,” with “intermediate” in the middle. After completion
of each block of images, participants also made the same valence,
arousal, and confidence ratings in response to the entire block. The
participant rating data are not reported here. Finally, participants
completed additional tasks not related to this study. Participants
were compensated $5 per half hour.

2.1.3. Annotating EDA data
A group of four experts (trained by an author, I.K.) labeled the

EDA data in response to each photo by simultaneously viewing the
EDA data, respiration belt data, and a video of the participant (the
EDA sensors were visible in the video) from photo onset to 4 s after
photo offset (10 s total). Each file was labeled by one of the four
trained experts while simultaneously viewing the video to increase
the robustness and consistency of the labeling. Additionally, each
labeled file was  reviewed by author I.K. to verify consistency and
robustness of the labels. Each EDA data segment was labeled using
one of the following possibilities: 1) only one SCR, which is a bio-
logically induced EDA response of at least 0.01 �S in magnitude
from tough to peak, regardless of whether it was caused by the
photo; 2) only two  SCRs; 3) only three SCRs; 4) only four SCRs;
5) an artifact, which is a change in EDA not due to an SCR (e.g.,
the participant or other objects touching the EDA sensors or ten-
sion on the EDA leads); 6) participant movement (e.g., scratching
their nose) without an EDA response; 7) at least one SCR caused by
participant movement; 8) an artifact caused by participant move-
ment; 9) no SCR, participant movement, or artifacts; or 10) no data
available. Using these annotations, the EDA data was categorized
into the following four groups: 1) segments that elicited a clear
SCR (cases 1–4 above); 2) no response (case 9); 3) segments that
involved a clear EDA artifact (cases 5, 6, and 8); and 4) all other seg-
ments (cases 7 and 10). Groups 1 and 2 were used for analysis for
SCR identification (Section 3.1), group 3 was used for analysis for
artifact identification (Section 3.2), and group 4 was  not analyzed
further. In total, there were 6175 events. A histogram showing the
relative frequency for each group of events is shown in Fig. 2.

2.2. Analysis methods − SCR identification
This section provides a brief overview of our proposed method-
ology to automatically identify expert labeled SCRs (further detail
is provided in Sections 2.2.1–2.2.4), see Fig. 3. For an analysis of
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Fig. 2. Relative frequency of responses shown by group.
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Fig. 3. Flowchart depicting analysis methodology.

DA signals using the OMP  methodology, the participants’ EDA
ignals were initially filtered and downsampled (see below for
ore details). After filtering and downsampling was complete,

onic and phasic components were estimated using the tonic esti-
ation methodology introduced in our previous paper [3]. Tonic

stimates were subtracted from the EDA signal to obtain pha-
ic components. Initially, SCRs were identified from the phasic
omponents using the batch OMP  (BOMP) in conjunction with

 knowledge-driven dictionary. Corresponding performance mea-
ures were calculated and misses in each signal were analyzed to
nd common trends and expand the knowledge-driven dictionary

o a data-driven dictionary. Using the expanded dictionary, SCRs
n the phasic components were again identified with the BOMP

ethodology and new performance measures calculated. The fol-
owing sections breakdown each aspect of our methodology in
urther detail.

.2.1. Preprocessing and tonic estimation

To determine the best functioning filter and downsample unit,

ignals were analyzed using three different filters and a range of
ampling frequencies. All filters used were low pass with cutoff
requencies of 0.35 Hz, 0.5 Hz, and 1 Hz, respectively. These cutoff
Fig. 4. Template used to create the base dictionary .

frequencies were chosen based on the average rise time of an SCR.
The typical rise time is between 1 and 3 s [1], which corresponds to
1 − 0.35 Hz signals. The sampling frequencies, Fs, ranged between 1
and 3 Hz to match each filter and avoid aliasing; and were obtained
by downsampling the raw data from the original Fs of 1000 Hz.
The lowest sampling frequency possible was  used for each filter,
as higher sampling frequencies did not show any benefits identify-
ing SCRs and significantly increased run time required to complete
BOMP analysis.

After preprocessing was  complete, tonic and phasic estimations
were found for each signal using the methodology introduced in
our previous work [3]. However, in our previous work, we focused
more heavily on using Ledalab’s methodology for estimating tonic
and phasic components to facilitate comparison between the OMP
methodology and Ledalab. Our tonic estimation methodology was
therefore not fully investigated at that time, but is addressed more
fully in the current study.

To estimate tonic and phasic responses of each signal, the first
step was  to find local minima throughout the data. A strict search
pattern was  employed for minima identification, meaning that
a minimum was only identified if the directional derivative was
greater than zero on both the right and left edges. Once all local
minima were located, they were filtered using a threshold to set a
minimum time distance required between minima, MT. Using this
threshold, each minimum was checked in relation to the previous
minimum and, if the difference was  not greater than MT, the second
minimum was  removed. After minima were filtered, interpolation
through the minima was done using a linear fit to create the tonic
estimate. Finally, the tonic estimate was  subtracted from the orig-
inal EDA data to obtain an estimate of the phasic component. Note
that to identify SCRs in phasic components, BOMP fits atoms in the
generated dictionary to the phasic component only. Therefore, fur-
ther reference to estimated signals refer to the fit of the BOMP to
the phasic component instead of the full EDA signal.

To determine the optimal MT, a range of thresholds were tested
and corresponding performance evaluated. Using the knowledge
that the average length of an SCR is between 3 and 10 s [10], the MT
range investigated was 1–10 s using a step size of 1 s.

2.2.2. Dictionary creation and expansion
In this study, two  BOMP analyses were used sequentially to first

generate and expand the dictionary and then to calculate final per-
formance measures. To avoid overfitting of the BOMP analysis, the
dictionary was expanded based on a test set of signals, and final
performance measures were calculated on a validation set. Initial
BOMP analysis of each test signal was  completed using a base dic-
tionary, as introduced in our previous study [3], designed as follows.
Each individual column (i.e., atom) in the base dictionary repre-
sents a single SCR whose shape is defined by the Bateman equation,
�1 = 0.75 and �2 = 20, for a 30-s time window. The SCR onset for the
first column was set to equal time 0 and then shifted by one sam-

ple for each additional column until the length of the signal was
reached. This allowed for an SCR to be identified at any time point
within the signal. The format of the base dictionary is show in Fig. 4.
The initial �1 and �2 parameters used in the base dictionary were
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Table 1
Pseudocode for the BOMP algorithm used in our analysis.

1 Input: Dictionary D, signal x, target sparsity K

2 Initialize: Set I := (), L:= [1], r := x, � := 0, � := DT x, n := 1
3  while sparsity < K
4 k̂:=argmax|dT

k
r|

5  if n > 1

6  w:=Sovleforw
{
Lw = DTI dk̂

}
7 L:=

[
L 0

wT
√

1 − wTw

]
8 end

9 I:=
(
I, k̂

)
10 �I :=solveforc

{
LLT c = ˛I

}
11 r = x − DI� I

12 n = n + 1
M. Kelsey et al. / Biomedical Signal 

hosen based on existing literature as reasonable �1 and �2 val-
es for SCR responses [1]. Additionally, the initial parameters were
elected so that �2 > �1 to maintain the assumption of non-negative
CR responses in the base dictionary.

After each test signal was initially analyzed with the BOMP
ethodology and base dictionary, missed SCRs were identified,

nd new �1 and �2 values were computed to fit to the misses
sing the Bateman equation. Again, each new �1 and �2 pair was
onstrained to �2 > �1 to maintain only non-negative responses in
he dictionary. This process returned optimal �1 and �2 values for
ach missed SCR. Using the optimal parameters for all misses, his-
ograms were plotted and used to identify the common �1 and �2
alues across the misses. The identified common �1 and �2 values
ere then used to create new SCR shapes that were added as addi-

ional columns to the dictionary. Each new SCR shape was added to
he dictionary using the same methodology used to create the base
ictionary.

.2.3. Batch OMP
As previously mentioned, the specific OMP  algorithm used in

ur analysis is referred to as batch orthogonal matching pursuit
BOMP) and is based on Eq. (4):

 = Argmin
�

‖x − D�‖ 2

2
Subject To‖�‖

0
≤ K (4)

n (4), � is the estimated coefficient vector, x is the phasic estimate
o be analyzed, D is the dictionary, and K is the sparsity constraint.
ike any OMP algorithm, BOMP uses a greedy approach with the
wo main steps introduced earlier. To further improve upon the
raditional OMP  algorithm, the BOMP algorithm reduces computa-
ional complexity by introducing a Cholesky factorization [22]. OMP
lgorithms orthogonalize each selected atom, which introduces a
atrix inversion at each iteration. The orthogonalization step, with

he matrix inversion, is shown in Eq. (5):

 = (DI)
+x

 (DTI DI)
−1

DTI x (5)

rom equation (5) at each iteration the DTI DI matrix remains
on-singular due to orthogonalization; the DTI DI matrix is also

 symmetric positive-definite (SPD) matrix which is updated
ach iteration by simply adding a single row and column to the
atrix [22]. To improve performance and decrease computational

omplexity, Cholesky factorization was used to only require com-
utation of the last row of the new matrix, replacing the need
o invert the larger DTI DI matrix at each step [22]. This leads to
ess computational complexity and faster BOMP algorithm (sum-

arized in Table 1). Another difference between traditional OMP
ethods and BOMP is that BOMP uses sparsity as the stopping

riteria for the iterations, which further enforces sparsity on the
stimates. However, using sparsity as the stopping criteria makes

 into a system parameter that needs to be optimized for each sig-
al. To accomplish this, the BOMP analysis was run over a range
f K values, 10–400 for each signal, and the best value was chosen
ased on the calculated performance measures.

.2.4. OMP  thresholding and performance measure calculations
Recall from (4), the output of the BOMP analysis is a matrix (�)

epresenting which atoms from the dictionary were chosen (i.e., the
eights for each atom). The dictionary is comprised of individual

CRs, so each selected atom corresponds to a single SCR identified

n the phasic component. This means that each non-zero value in �
epresents the onset of an SCR. However, to get an accurate count
f SCR onsets, post-processing on � is needed to remove values
hat do not align with the working knowledge of SCR shapes. For
13 end
14 Output: Sparse representation � such that x ≈ D�

example, to maintain non-negative SCR responses, any negative �
values were removed as they correspond to convex inflections in
the estimate, representing negative responses.

To facilitate the comparison between our methodology and
Ledalab, average performance measures, including accuracy, sen-
sitivity, specificity, F1 score, and true SCR identification percentage
(number of identified SCRs divided by number of labeled SCRs), are
reported over a set of labeled EDA data (see section 2.1 for details on
the EDA data labeling). Using human annotated data as the ground
truth, performance was  evaluated using time ranges correspond-
ing to each picture being shown. True positives were counted if the
number of responses labeled for a specific picture were correctly
identified in the estimate. A true negative was counted if neither
the labels nor estimates contained any responses. False negatives
and false positives were counted if any missed or extra responses
were found.

Each performance measure was  then statistically assessed, first
using a two-sided Wilcoxon ranksum test, and if a statistical differ-
ence was found, then a one-sided Wilcoxon ranksum test [33,34].
Using a combination of the two-side and one-side ranksum test
allowed us to determine statistical significance of the differences
seen between BOMP and Ledalab’s returned performance, and to
determine if the performance was statistically the same, or if the
populations were not the same, if our method or Ledalab’s had a sta-
tistically higher median. The ranksum test is a nonparametric rank
test that assesses equality of the median for two populations. For
the two-sided ranksum test, the null hypothesis assumes that the
medians of the two  populations are the same while the alternative
hypothesis assumes that the two  population medians are differ-
ent. For the one-sided ranksum test, the null hypothesis assumes
that the median of population x is less than or equal to the median
of population y, while the alternative hypothesis assumes that the
median of population x is greater than the median of population y
[33,34]. We  chose to use the one-side test as a secondary evalua-
tion to determine which population had a greater median value as
opposed to simply determining if the populations were statistically
different.

2.3. Analysis methods − artifact identification & classification

To investigate the ability to automatically distinguish between
artifacts and SCRs, several artifacts, previously identified by expert
human raters, were fit using the Bateman equation, which returned

the �1 and �2 value pairs for each artifact. The returned �1 and
�2 parameters for artifacts and previously determined �1 and �2
value for SCRs were then used as features in SVM and discrimi-
nate analysis classification. For SVM classification, linear and radial
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ig.5. Histogram showing the relative frequencies of each response type analyzed
n  the test set (N = 10 participants, 1030 events).

asis function classification schemes were investigated. Addition-
lly, linear and quadratic schemes were used in the discriminate
nalysis classification. Due to a low number of labeled artifacts,
oth classification methodologies used leave-one-out analysis to
plit the data into testing, training, and validation sets.

. Numerical experiment and results

.1. SCR identification

To limit overfitting, the data used was split into a test set and
 validation set. Most of our analysis was done using the test set,
hich was made up of 10 of the original 55 participants. The 10

est participants were randomly selected with no prior knowl-
dge of the participants’ EDA data being used. The remaining 45
articipants formed the validation set. Sections 3.1.1 and 3.1.2
resent results obtained using only the test participants. Section
.1.3 presents a comparison of our methodology to Ledalab, first
sing the test participants and then using the validation partici-
ants.

The 10 selected test participants consisted of 4 females
nd 6 males with ages ranging between 18 and 36 years
M ± SD = 22.8 ± 5.5 years). Using 10 participants led to 1030 total
vents which, based on the received annotations, had 239 single
CRs (case 1), 61 events that had 2 SCRs totaling 122 SCRs (case 2),

 events which had 3 SCRs totaling 27 SCRs (case 3), no events which

ad 4 SCRs (case 4), and 620 events with no response (case 9). This
ave us a total of 442 total SCRs and 620 events with no response.
vents labeled as artifacts, had no data, or fell into another cate-
ory were not considered for this section of the study (cases 5–8,

Fig. 7. Proposed tonic estim
Fig. 6. Ledalab’s tonic estimation shown with the raw data and signal reconstruc-
tion.

and 10). Fig. 5 shows the histogram of the frequency of the different
cases analyzed.

3.1.1. Tonic and phasic estimation
To determine a robust way  to estimate tonic and phasic com-

ponents, we  first compared performance of our tonic estimation
procedure with Ledalab’s. We  found that our methodology was
more robust across different signals and led to a better ability to
detect SCRs. To further improve upon our procedure, we  then tested
different filters and MT values with our methodology to find the
optimal combination based on calculated performance measures.

We started by comparing our methodology to Ledalab’s tonic
estimation using a 0.35 Hz filter and MT equal to 10 s. Fig. 6 shows
the original signal, Ledalab’s tonic estimation, and the tonic plus
phasic reconstruction from Ledalab. As can be seen from the recon-
structed signal (red curve), much of it is below the original signal,
and therefore does not produce a good fit. This suggests that infor-
mation from the original signal has been lost during LedaLab’s
estimation process. While Ledalab’s estimation works well for some
signals, it is not robust to all signals as it is dependent on the number
of optimizations used during the tonic estimation process. To get a
good reconstruction fit for some signals, two  or more optimizations

are required, which is time consuming and requires trial and error
to determine an optimal optimization number for each individual
signal. Finally, the performance was  low when using Ledalab’s pha-
sic estimation to identify SCRs with the BOMP methodology. Only

ation methodology.
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Table  2
Average performance calculated for each combination of filtering and thresholding
evaluated.

Low Pass
Filter

Min
Threshold
(sec)

Accuracy Sensitivity Specificity TIP
(/442)

.35 Hz
10 67.96 59.49 73.22 266
3 67.63 64.07 71.77 267
2 66.13 64.49 68.94 268
1 65.89 63.98 69.51 265

.5  Hz
5 60.40 61.35 62.48 248
3 62.50 63.69 62.31 263
2 63.01 64.72 62.82 262
1 60.57 63.31 59.82 256

1  Hz
5 61.22 61.25 63.59 251
3 61.29 62.07 63.33 256
2 63.01 64.72 62.82 262
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accuracy, we expanded the dictionary from a knowledge driven
1 68.63 68.80 70.83 293

7.83% of possible SCRs in the signals were detected. In contrast, our
onic estimation, shown in Fig. 7, was based on the minima through-
ut the signal, so the reconstructed signal follows the original signal
ore closely and minimal information is lost. The response was

ignificantly better using our estimate, detecting 60.18% of the pos-
ible SCRs. The major issue with the original methodology used for
ur tonic and phasic estimation was that, due to the chosen MT,
ot every minimum within the signal was used. Therefore, it was
ossible to get negative responses in the estimated phasic compo-
ent. Negative responses violate the previously made assumption
f non-negativity in EDA signals, and are not possible to achieve
aturally. Fig. 7 shows an example of a signal where the raw data is
elow the tonic estimation, meaning when this tonic is subtracted
rom the raw data it produces a negative response in the phasic
omponent.

To find a more robust way to estimate the tonic level and
educe negative responses in our methodology, several filtering and
hresholding values were examined and compared. To determine
erformance of each tonic estimation method, SCRs were identi-
ed in each estimated phasic component using BOMP, and then
verage accuracy, sensitivity, specificity, and true SCR identifica-
ion percentage (TIP) was computed. These computed performance

easures were then used to determine which method yielded the
est detection ability. Table 2 shows the average performance for
ach filtering and MT combination investigated. It was  determined

hat for the 10 test participants, the best performance was achieved
y filtering with a 1 Hz low pass filter and an MT = 1 s, producing an
verage accuracy of 68.63% and a TIP of 66.29%.

Fig. 9. (left) Histogram of �1 and �2 values returned from the
Fig. 8. Bad estimated fit generated from missed SCRs.

In our previous work, the run time for Ledalab and our method-
ology was  compared, and it was shown that the BOMP methodology
significantly improved run time [3]. In this study, the filter used
to create tonic and phasic estimates slowed run time. We  investi-
gated the performance of the tonic estimation by first assessing the
0.35 Hz filter. This filter was  the same as that used in the previous
study, and allowed us to use a sampling frequency of 1 Hz. As in the
last study, the present study found that using the 0.35 Hz filter, run
with files whose average length was 46.41 min ± 7.85 min, with the
BOMP methodology was faster than Ledalab’s run time, regardless
of the MT value. However, moving to the 1 Hz filter with the same
files increased run time of the BOMP method due to the higher
sampling rate needed to avoid aliasing, FS=3 Hz. This time increase
caused our methodology to have a longer run time than Ledalab.
However, it was also shown in our previous work that Ledalab’s
run time increased dramatically more than the BOMP method as
the length of the signal increased [3]. This suggests that longer sig-
nals could still favor the BOMP methodology, even with the increase
in run time caused by the 1 Hz filter. Therefore, further analysis of
run time with ambulatory data is needed to get an accurate pic-
ture of run time in both systems. As the best overall performance
measures were achieved using the 1 Hz filter with MT = 1 s, phasic
estimation for all further models used this parameter set.

3.1.2. Dictionary expansion
Using our tonic estimation method with the base dictionary, we

were only able to achieve an accuracy of 52.10%. To improve this
dictionary to a data driven one using general trends found from the
fits of missed SCRs. To be able to identify SCRs within the signal, the
Bateman equation was  used to fit approximately 150 missed SCRs

 estimated fits. (right) scatter plot of the same values.
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Fig. 10. New SCR shapes used to expand the initial dictionary.
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Fig. 11. Phasic estimate created usin

nd return the ideal �1and �2 pair for each miss. After completing
n initial analysis of the returned parameters, about 30% of the fit
ata was removed due to bad fits. A bad fit was determined either if
onvergence was not reached in 100,000.000 iterations, or through
isual inspection. Fig. 8 shows an example of a bad fit removed dur-
ng visual inspection. This fit misses the peak of the SCR and instead
ust fits to the recovery, giving an overall linear trend. Along with
isual inspection, value pairs were removed if the �1 or �2 value
as greater than 1000. It was determined that fits with a �1 or �2

alue over 1000 either led to SCRs with sharp peaks, meaning they
ad fast rise and recovery times, or produced responses similar to
ig. 8. Shapes with fast rise and recovery times are more akin to
oise than to true SCRs (Taylor, Jaques, Chen, Fedor, Sano, & Picard,
015), and were therefore ignored. After the bad fits were deter-
ined and removed, there were approximately 100 �1and �2 pairs

eft. They are plotted using a bivariate histogram, shown in Fig. 9

left), to determine common values. The histogram shows most of
he values falling into a linear trend between the �1and �2 values,
ith the �2 values being slightly larger. The rest of the parame-

ers generally fell into bins where the �2 values were significantly
ethodology with BOMP fit overlaid.

larger than the �1 values. These trends match the previously made
non-negativity assumptions and fit with the constrain of �2 > �1
required for the dictionary. Plotting the �1and �2 values in a scat-
ter plot, Fig. 9 (right), suggests three or four major clusters existing
within these two  trends.

Using these clusters and the most common bins produced from
the histogram, six additional SCR shapes were chosen to expand the
dictionary. The new dictionary therefore included atoms for each
new shape as well as the original shape used. Fig. 10 shows the
shape of the additional atoms added to the dictionary. While deter-
mining these additional shapes, we  found that the general shape of
each new atom was relatively the same, and the major difference
between the new shapes was  the times required for the SCR to reach
half and full recovery. The 6 new shapes, therefore, gave a range of
SCR length between 5 and 20 s, which matches previously reported
ranges of SCR lengths [6]. This new dictionary was  thus used to

re-identify SCRs in each test signal with significantly improved per-
formance over the initial accuracy reported above (see section 3.1.3
for details).
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Table  3
Performance by participant for our methodology (left) and Ledalab’s analysis (right). Note: table refers to the participants in the test set.

File Sparsity Accuracy Sensitivity Specificity F1 Score File Accuracy Sensitivity Specificity F1 Score

1 400 71.11 77.27 69.12 56.67 1 77.27 50.00 86.36 52.38
2  200 91.43 85.71 92.31 72.73 2 87.25 7.14 100.00 13.33
3  400 55.74 51.39 62.00 57.81 3 71.19 62.50 84.78 72.58
4  400 66.67 77.03 50.00 74.03 4 47.66 32.43 81.82 46.15
5  400 63.33 41.67 71.21 37.74 5 72.41 0.00 100.00 0.00
6  350 60.26 54.24 78.95 67.37 6 53.09 44.07 77.27 57.78
7  300 74.34 84.91 65.00 75.63 7 77.78 94.34 64.06 79.37
8  350 66.02 88.24 61.63 46.15 8 88.00 64.71 92.77 64.71

.04 9 45.45 26.09 90.00 40.00

.90 10 63.46 33.33 81.54 40.63

.31 Avg 68.36 41.46 85.86 46.69
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Fig. 12. Sparsity vs average performance.

Table 4
Average performance found using the validation participants.

Method Accuracy Sensitivity Specificity F1 Score

Ledalab analysis 75.58% 62.21% 73.38% 56.62%
BOMP analysis 71.27% 74.93% 60.71% 59.07%
9  350 68.69 60.87 86.67 73
10  350 70.37 68.42 71.43 61
Avg  - 68.79 68.97 70.83 62

.1.3. BOMP SCR identification vs. ledalab SCR identification
In this section, we compare the ability of two algorithms, Ledalab

nd our novel approach, to identify SCRs in an EDA dataset using
ccuracy, sensitivity, specificity, F1 score, and number of SCRs
dentified as performance measures. It was found that our novel
pproach produced results that were more robust than those of
edalab. Additionally, the ability of our method to be extended to
ew data was tested. We  found that using the BOMP algorithm with

 data driven dictionary also showed a good ability to fit to new EDA
ignals.

Fig. 11 shows the BOMP fit based on our phasic estimation that,
hrough visual inspection, suggests that BOMP captures overall
eaks and trends of the original signal. To give a clearer view of
he original signal and fit, Fig. 11 shows the estimate zoomed in
etween 2150 and 3200 samples. BOMP, with post processing of
he estimated gamma  values, identified SCRs with an average accu-
acy of 68.79% ± 9.64% (M ± SD) compared to a Ledalab accuracy of
8.36% ± 15.44%. While the average accuracy for both systems was
tatistically the same (p = 0.7337), Ledalab showed significantly
igher variability across participants, suggesting that the BOMP
ethod may  better generalize across different participants. Look-

ng at sensitivity, 68.97% ± 16.25% for BOMP versus 41.46% ± 28.17%
or Ledalab, shows a statistically significant increase in BOMP over
edalab (p = 0.0257). Additionally, of the 442 labeled SCRs across
he 10 test participants, BOMP successfully located 66.29% of the
CRs while Ledalab only located 45.02%. While the BOMP method
oes a superior job detecting SCRs, specificity favors Ledalab
ver the BOMP method. Specificity for Ledalab, 85.86% ± 10.80%,

s statistically better than the BOMP method, 70.83% ± 12.53%
p = 0.0211). Finally, to consider both false negatives and false
ositives, F1 scores were calculated. F1 scores showed a bene-
t towards the BOMP analysis (62.31% ± 12.83%) over Ledalab’s
ethod (46.69% ± 24.93%). While the accuracy is of our novel

pproach is the same as Ledalab, given the improvements seen
n sensitivity and F1 scores, we feel that our novel approach per-
orms better overall and will likely yield better performance when
pplied to the detection of SCRs in ambulatory data. Additionally,
he high number of false positives seen in the BOMP, which causes
he low specificity, could be reduced through further optimization
f the dictionary, and inclusion of artifact elements in the dictionary
please see section 3.3 for full discussion of method improvements).
able 3 shows the performance measures calculated for each of the
0 test participants and the averages for both Ledalab and our novel
pproach.

We noted in section 2.2.3 that the sparsity system parameter,
, was varied between 10 and 400 to find the optimal value. As
an be seen from Table 3 (left), the ideal K was between 200 and
00 for each participant. The variability seen appears to be due to

he role that sparsity plays in goodness of fit and subsequently the
alculated performance measures. With the lowest sparsity, speci-
city will be the maximum achievable for the participant, and show
a decrease as sparsity increases. Inversely, sensitivity is low with
low sparsity, and increases as sparsity increases. Fig. 12 shows this
general trend for a single participant. This suggests that by adjust-
ing sparsity, sensitivity and specificity could be adjusted. For the
above results, we  picked the best sparsity value to maximize and
balance both sensitivity and specificity.

To show the ability of our method to be generalized, our full
method was applied to the validation signals set-aside at the
beginning of the analysis. Table 4 shows the average performance
values across the 42 validation participants. The returned perfor-
mance measures from the validation set are similar, if not slightly
improved, to that found in the test set. Additionally, the ranksum
test was  again used to determine statistical similarity between the
test set and the validation results. It was found that all the per-
formance measures reported were statistically equivalent, each
accepting the null hypothesis. The similarity in the validation sets
performance shows the ability of the BOMP methodology to be
extended to new data without requiring modification of the dic-
tionary. This ability to successfully identify SCRs in the validation
set suggests that overfitting was  avoided and that our methodol-
ogy can be easily expanded to ambulatory data without requiring

significant modifications.
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The recent ability to collect EDA ambulatorily has allowed many
Fig. 13. Parameters required to fit to SCRs and artifacts.

.2. Artifact detection

As seen in Fig. 2, artifacts occurred in the data set very
nfrequently. Therefore, there were only a few labeled artifacts
hroughout the data (33 events that had artifact labels, cases 5,6
nd 8). These labeled artifacts were spread across 11 of the partici-
ants. The 11 participants consisted of 5 females and 6 males with
ges ranging between 18 and 38 years (M ± SD = 24.4 ± 6.8 years).

.2.1. Artifact and SCR separability
To determine separability between artifacts and SCRs, the

arameters returned from the Bateman equation were used as
eatures to complete classification with SVM and discriminant
nalysis. Quadratic discriminant analysis (QDA) produced the best
lassification, showing accuracies of 73.66%.

Using the 11 participants introduced above led to approximately
0 �1 and �2 parameters returned after fits were found for each

abeled artifact. The low number of identified artifacts was  expected
ue to signal collection conditions. As the lab-based experiment
inimized artifact, it was difficult to include a more holistic arti-

act detection scheme. Still, 50 fits allowed an investigation into
he shape of artifacts and the possibility of distinguishing between
rtifact and SCR fits in future work.

Plotting the fit parameters for both artifacts and SCRs, Fig. 13
hows that most �1 and �2 values required to fit to artifact fall below
, while most �1 and �2 values that fit to SCRs fall above 1. This
ifference shows that �1and �2 parameters for artifacts and SCRs

all into different regions of the feature space with minimal over-
ap, suggesting that separability may  exist between the two shapes.
his was supported by the classification achieved using QDA. QDA
ielded a classification accuracy of 73.66%, 81.25% sensitivity for
rtifact classification, and 71.34% sensitivity towards SCR classifi-
ation. Being able to successfully classify artifacts versus true SCRs
ill allow for the addition of artifact columns in the dictionary

n future work. This dictionary expansion may  enable our novel
ethod additional advantages over Ledalab and many of the other

urrent EDA analysis systems. Ledalab does not include the abil-
ty to handle artifacts and they suggest artifacts be removed before
he software is used [13,16], which is impractical in long-term nat-
ralistic studies. Adding artifact elements into the dictionary would
llow our novel method to automatically identify artifacts as well

s SCRs so that signals do not need to be artifact-free before analysis
s completed [35].
sing and Control 40 (2018) 58–70

3.3. Future work

Our expanded data driven dictionary significantly improves
upon our previously introduced methodology, but leaves several
outstanding issues to be addressed. Future work is needed to fur-
ther improve the robustness of EDA analysis and to fully test
the performance of our system when applied to ambulatory EDA
data. The two  major outstanding areas for improvement using our
methodology (further expanded upon below) are to better balance
false positives and true positives and to improve upon automated
artifact detection. Additionally, this study used lab-collected data
for analysis since it provided us with SCRs elicited using a standard
method and expert labels as ground truth. To fully address the per-
formance of our system towards ambulatory data further, tests are
needed that use expert-labeled ambulatory data.

Approximately 17% of SCRs missed after our best run were
caused either by 1) filtering and phasic estimation or 2) incor-
rectly counting misses due to post-processing. The first type of
misses could be better handled through further analysis of opti-
mal  parameters for our tonic estimation methodology. Prior to our
analysis, we hypothesized that a lower minimum time distance,
MT, would allow for more compound SCRs to be correctly identi-
fied; but it could have increased our false positive detection due to
noise. Higher MT values, in contrast, would likely reduce fitting to
noise, but could limit our ability to detect compound SCRs. Unfortu-
nately, due to a low number of labeled compound SCRs, this could
not be satisfactorily studied within the dataset used in the cur-
rent manuscript. However, using data collected with a rapid stimuli
paradigm could generate more compound SCRs, allowing us to fully
investigate our hypothesis, and better identify optimal parameters.
A study which employs a rapid stimuli paradigm would purpose-
fully attempt to elicit new SCR responses before the previous
response could fully recover [10], thereby increasing the presence
of compound SCRs. Additionally, data with more compound SCRs
would allow us to address the second issue, miscounting identi-
fied SCRs as misses. In our analysis, we  used a threshold of one
second between chosen dictionary atoms, based on prior knowl-
edge, in favor of reducing double counting SCRs. However, this
thresholding limited our ability to fully capture compound SCRs
that were elicited less than a second apart. Further analysis of typi-
cal compound SCR parameters, as mentioned above, could allow
us to balance capturing all SCRs while avoiding additional false
positives.

The second issue remaining is to include artifact atoms into our
dictionary, as it has been shown in this work that artifacts can
be separated from SCRs with high accuracy. To incorporate these
atoms, data with artifacts not removed by filtering is needed. In
addition, longer more complex signals such as those collected using
ambulatory sensors will aid in testing and developing artifact atoms
[35].

Finally, we would plan to further test our system’s ability to
be generalized to different populations, contexts, and recording
devices. Running our analyses on our validation set suggested our
methodology would be generalizable, but since this data was col-
lected using the same methodology and recording device as our
test set, further analyses are required. We  therefore plan to test
our methodology on a variety of different EDA signals collected
in different situations from different populations using different
methodologies [35].

4. Conclusion
studies to be expanded, with data collected for longer time periods
and in a variety of settings [5,9], [25]. However, this new data col-



Processing and Control 40 (2018) 58–70 69

l
a
f
n
l
i
p
t
2
t
n
w
fi
d
s
a
o
o
r
w
d
o
a
i
t
i
s
m
a
s
t
m
t
a
o
b
i

A

M
a
(
F
F

A

T
P

Table A1 (Continued)

Block IAPS Number Block IAPS Number

Neutral Low Set 1 7020 Neutral Low Set 2 7025
Neutral Low Set 1 7175 Neutral Low Set 2 7011
Neutral Low Set 1 7009 Neutral Low Set 2 2440
Neutral Low Set 1 7030 Neutral Low Set 2 7018
Neutral Low Set 1 7150 Neutral Low Set 2 7055
Neutral Low Set 1 7016 Neutral Low Set 2 2397
Neutral Low Set 1 7034 Neutral Low Set 2 2512
Neutral Low Set 1 7012 Neutral Low Set 2 2396
Neutral Low Set 1 7050 Neutral Low Set 2 7031
Neutral Low Set 1 7185 Neutral Low Set 2 7041
Negative High Set 1 9183 Positive High Set 2 7650
Negative High Set 1 3110 Positive High Set 2 8300
Negative High Set 1 6350 Positive High Set 2 8210
Negative High Set 1 6520 Positive High Set 2 5470
Negative High Set 1 3080 Positive High Set 2 8251
Negative High Set 1 9413 Positive High Set 2 8502
Negative High Set 1 9902 Positive High Set 2 8470
Negative High Set 1 3500 Positive High Set 2 8496
Negative High Set 1 3550.1 Positive High Set 2 5833
Negative High Set 1 9921 Positive High Set 2 8193
Positive Low Set 1 2352 Negative Low Set 2 9426
Positive Low Set 1 7508 Negative Low Set 2 3216
Positive Low Set 1 4624 Negative Low Set 2 2457
Positive Low Set 1 8497 Negative Low Set 2 3181
Positive Low Set 1 1463 Negative Low Set 2 9331
Positive Low Set 1 4628 Negative Low Set 2 9470
Positive Low Set 1 1720 Negative Low Set 2 9265
Positive Low Set 1 2274 Negative Low Set 2 9610
Positive Low Set 1 2310 Negative Low Set 2 7359
Positive Low Set 1 5215 Negative Low Set 2 3160
Negative Low Set 1 2141 Positive Very Low Set 2 1659
Negative Low Set 1 3300 Positive Very Low Set 2 2510
Negative Low Set 1 9140 Positive Very Low Set 2 5711
Negative Low Set 1 9332 Positive Very Low Set 2 1604
Negative Low Set 1 9342 Positive Very Low Set 2 5200
Negative Low Set 1 2900 Positive Very Low Set 2 7530
Negative Low Set 1 9832 Positive Very Low Set 2 1740
Negative Low Set 1 2301 Positive Very Low Set 2 2314
Negative Low Set 1 9295 Positive Very Low Set 2 1601
Negative Low Set 1 9220 Positive Very Low Set 2 2530

[

M. Kelsey et al. / Biomedical Signal 

ection methodology introduces several challenges for processing
nd analyzing EDA signals. Principal among these issues is the need
or a robust way to accurately and automatically process EDA sig-
als, removing the need for manual work, which is error-prone and

aborious in very long recordings. While the end goal of our work
s toward scalable and accurate analysis of ambulatory data, the
resent study relied on lab-collected EDA data for two reasons: 1)
he stimuli used are well-studied and effective for eliciting SCRs and
) expert human raters labeled responses that served as the ground
ruth. Using this data, we were able to develop a data-driven dictio-
ary that, when used with an OMP  algorithm, detected labeled SCRs
ith an average accuracy of 68.80%, sensitivity of 70.83%, speci-
city of 69.00%, and F1 score of 62.31%, with an ability to positively
etect 66.29% of all pre-labeled SCRs in the test signals. This is a
ignificant improvement in sensitivity and F1 score over currently
vailable EDA analysis software. We  were also able to generalize
ur dictionary by developing a robust tonic estimation methodol-
gy that could be used to estimate phasic components of the signal,
emoving the need for tonic atoms in the dictionary. Additionally,
e showed the ability of our methodology to be extended to new

ata with an accuracy of 70.49%, and detection rate of 68.85% with-
ut the dictionary or methodology needing to be modified, which
gain is a significant improvement over current methods. This flex-
bility suggests that our methodology can continue being extended
o new data, including ambulatory data, without requiring signif-
cant modification of the methodology or dictionary. Finally, we
how that, using only �1 and �2 values returned from the Bate-
an  equation to describe both artifacts and SCRs, classification

ccuracies of 73.66% can be achieved using a simple QDA analy-
is. Using QDA to show separability of artifacts and SCRs suggests
hat artifacts could be included in the dictionary without compro-

ising the ability to detect SCRs, therefore allowing our method
o identify both SCRs and artifacts. In conclusion, our methodology
ppears to provide significant improvement in SCR identification
ver currently available methods and, given the separability found
etween SCRs and artifact, will be extendable to automated artifact

dentification in the future.
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ppendix A.

able A1
ictures presented from the International Affective Picture System (IAPS).

Block IAPS Number Block IAPS Number

Anchor 3000
Anchor 7010
Anchor 8499
Positive High Set 1 8400 Negative High Set 2 3100
Positive High Set 1 8178 Negative High Set 2 9414
Positive High Set 1 8034 Negative High Set 2 3180
Positive High Set 1 8341 Negative High Set 2 9635.1
Positive High Set 1 8030 Negative High Set 2 3170
Positive High Set 1 8163 Negative High Set 2 3191
Positive High Set 1 8501 Negative High Set 2 3301

Positive High Set 1 8179 Negative High Set 2 2703
Positive High Set 1 8370 Negative High Set 2 9903
Positive High Set 1 8190 Negative High Set 2 3266 [
Note. Picture order was randomized within each block. Block order was  counter
balanced across participants
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