
Understanding the Mind by
Measuring the Brain
Lessons From Measuring Behavior (Commentary on Vul
et al., 2009)
Lisa Feldman Barrett

Boston College, Massachusetts General Hospital, and Harvard Medical School

ABSTRACT—Throughout the history of psychology, the path

of transforming the physical (muscle movements, verbal

behavior, or physiological changes) into the mental has

been fraught with difficulty. Over the decades, psycholo-

gists have risen to the challenge and learned a few things

about how to infer the mental from measuring the physical.

The Vul, Harris, Winkielman, and Pashler article (2009,

this issue) points out that some of these lessons could be

helpful to those of us who measure blood flow in the brain in

a quest to understand the mind. Three lessons from psy-

chometrics are discussed.

In 1862, Wilhelm Wundt tried to measure the speed of thought

by tracking the discrepancy between the actual and perceived

position of a swinging pendulum. By 1879, he had invented the

reaction time experiment to measure the speed of perception by

presenting participants with a tone or light of a particular color

and measuring their latency to press or release a button in re-

sponse. With these first experiments in psychology, Wundt’s goal

was to identify and measure the atoms of the mind—the most

elemental processes that are the basic ingredients of mental life.

Wundt’s method remains a standard in the science of psychology

today: Researchers carefully observe something physical (be it a

set of muscle movements such as in reaction time, a verbal re-

sponse such as a self-reported experience, or a bodily response

such as changes in heart rate) and record variations in these

measurements across time or context. Somehow, we figure out

which part of the observed variation is signal (the variation that

are meaningful to us and that we want to explain) and which is

noise (the variation we don’t care about). We then use the

physical to make inferences about the mental. We interpret the

‘‘signal’’ in terms of it psychological meaning and assume that

the ‘‘noise’’ does not contaminate this interpretive process.

Throughout the history of psychology, the path of transforming

the physical (muscle movements, verbal behavior, or physio-

logical changes) into the mental has been marked with unfore-

seen problems. Psychologists made many mistakes along the

way. Yet over the years, we have also learned a good many things

about how to avoid these pitfalls as we measure behavior in

various forms and guises to understand the mind. The publica-

tion of Vul, Harris, Winkielman, and Pashler (2009, this issue)

provides an opportunity to highlight some of these lessons. As it

turns out, the perils of inferring the mind from measuring the

brain are not all that different from those encountered when

attempting to infer the mind from measuring behavior. In this

commentary, I briefly discuss three lessons from classical

measurement theory using test construction as an analogy. When

psychologists build a test (a standardized procedure for sam-

pling behavior), a smaller group of items are selected from a

larger pool by some means, with the goal of measuring some deep

psychological property or trait. As I hope you will see, there is a

pretty direct parallel between ‘‘items in a test’’ and ‘‘voxels in the

brain.’’ As a consequence, we modern-day neuroscientists can

learn a thing or two from 20th-century psychometrics.

LESSON 1: DISTINGUISHING RELIABILITY
FROM VALIDITY

The Minnesota Multiphasic Personality Inventory (MMPI) is a

popular personality test given to help diagnose mental disorders.

Created in the 1930s, the MMPI was developed using an ex-

ternal, criterion-based approach to test construction (Hathaway

& McKinley, 1940). Researchers assembled a vast, heteroge-

neous pool of items, many of which had no apparent face validity.

These items were then administered to samples of patients, and

their friends and relatives, at the University of Minnesota
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Hospital. During test construction, items were selected on a

purely empirical basis—those that discriminated between pa-

tient samples (the criteria) were retained in the test (regardless

of their content) because they were effective (i.e., the items

could reliably distinguish between groups of people). Yet, re-

searchers went farther to also assume that these items were

measuring something real and important about the respondents’

mental health (i.e., that the items were valid). Items were

grouped into subscales and named for the diagnostic category

they best discriminated on the assumption that the items mea-

sured the mental essence of a mental disease. For example,

Scale 8 used to be called ‘‘the schizophrenia scale’’ because it

contained the set of items that best classified those who held a

clinical diagnosis of schizophrenia and those who did not.

Researchers and clinicians had to learn the hard way that the

MMPI subscales did not give a direct and unencumbered win-

dow on the mental illnesses that they were designed to measure.

There is an important difference between a test’s effectiveness

and its meaning—a set of items can be consistently valuable in

discriminating two groups without meaningfully measuring any

psychological property of interest (Burish, 1984). What if the

schizophrenic patients differed from controls in some other

systematic (but spurious) way that allowed the items to dis-

criminate between the groups? This would produce an effective

test even though the items did not measure schizophrenia per se.

The observation that a group of schizophrenic patients score

higher on a group of items does not in and of itself warrant the

conclusion that the responses to the items measure schizo-

phrenia. Vul et al. demonstrate a parallel observation about the

relation between voxels and mental states (and even about

weather stations and stock performance).

The distinction between effectiveness and meaningfulness

can be framed in formal psychometric terms: An external,

criterion-based approach to psychological measurement

confounds estimates of reliability (the repeatability of a mea-

surement) and validity (the psychological meaning of a mea-

surement). This is because an external criterion is being used to

determine both. As a result, it is easy to think we are measuring

one (validity) when, in fact, we are measuring other (reliability).

In their article, Vul et al. observe that some cognitive neu-

roscience investigations of social processes have confused re-

liability and validity. If we use an external criterion (such as

looking at negative and neutral pictures) to identify voxels

showing a significant change in blood oxygenation level de-

pendent (BOLD) response, and we then correlate the negativity

of those pictures to the magnitude of this change, it is ambiguous

whether the correlation reflects a reliability coefficient or a va-

lidity coefficient. We all know, however, that this sort of mistake

is not limited to functional imaging studies of social phenomena.

Examples can be found here and there throughout the imaging

literature. And as the MMPI example shows, this mistake in

psychological measurement is not limited to functional imaging

studies per se. No matter what the measurement domain, the

practice of using an external criterion (be it performance on a

task or self-reports) to distinguish signal from noise blurs the

boundaries between estimating what is reliable (and potentially

effective) and what is valid (and psychological meaningful),

leading to confusions in interpretation.

LESSON 2: THE ELUSIVE NATURE OF ‘‘ERROR’’

Notions of reliability and validity can be phrased in terms of this

equation: X 5 T 1 E. Albeit somewhat simple, this little

equation might be the single most important equation in any

field that attempts to infer something mental from the mea-

surement of something physical. It states that observed scores

(the actual numbers generated during measurement, denoted as

X) have two parts: that which is consistent and repeatable (the

‘‘true score’’ variance, denoted as T) and that which is random

and not repeatable (‘‘error,’’ denoted as E). Reliability is the

proportion of variance in observed scores (X) that is accounted

for by consistent variance (T)—it is the proportion of variance

that is repeatable on another occasions. Validity refers to the

psychological meaning of reliability variance. Now that we

have measured something consistently, what is it? What are the

numbers a measurement of?

As every observed measurement includes some signal (T) and

some noise (E), the trick is figuring out which part is which.

There are various ways to accomplish this. A set of measure-

ments taken at one point in time (Time 1) can be correlated

with those exact measurements taken at another point in time

(Time 2). This is called test–retest reliability. When a group of

respondents take the MMPI twice, separated by some interval,

the correlation coefficient that results is interpreted as a test–

retest (or stability) coefficient. The assumption from classical

measurement theory is that only consistent variance can cor-

relate with something else because error is random and will

fluctuate from Time 1 to Time 2. In addition, half of the mea-

surements at Time 1 can be correlated with the other half taken

at Time1 on the assumption that the two halves are equivalent.1

This is called split–half reliability. When responses from half

the MMPI items are correlated with responses from the other half

within a single group of respondents, the resulting correlation

coefficient is interpreted as a split–half reliability (or consis-

tency) coefficient. The split–half logic can be extended to ex-

amine the consistency of responses across all possible

combinations of MMPI items to compute coefficient alpha, a

very common estimate of internal consistency.

No single form of reliability is more ‘‘true’’ than any other.

The various ways of computing reliability estimate different

aspects of repeatability or consistency. Furthermore, no form of

reliability tells us what is being measured—a set of observations

1The issue of whether BOLD responses are equivalent at the beginning and
end of a study (reflecting the same psychological process) is somewhat ques-
tionable (given issues like habituation and repetition suppression). But a dis-
cussion of this issue goes beyond the scope of the present article.
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(i.e., responses to MMPI items, BOLD responses in voxels) could

be measuring one thing (homogeneous variance) or one hundred

things simultaneously (heterogeneous variance). Reliability

only tells us that, whatever we are measuring, we are measuring

it consistently, either within a measurement moment (split–half

reliability or internal consistency) or across measurement mo-

ments (test–retest reliability).

Once we know how much consistent variance is contained in

X, we can then ask what this variance refers to in psychological

terms. This is the question of validity. Just as there are many

different types of reliability, so too are there many different types

of validity. For example, criterion validity refers to a measure-

ment’s ability to predict or estimate some other measurement.

When we ask whether some items on the MMPI predict a certain

kind of diagnosis under certain circumstances, we are asking a

question about criterion validity. When we ask if BOLD re-

sponses in a particular set of voxels predict a behavior or self-

report, we are asking a question about criterion validity. In these

cases, the resulting correlation coefficient (or t test, which can

be transformed into a correlation coefficient) is interpreted as a

validity coefficient. Criterion validity does not really tell us

much about the mind—it does not tell us why a set of items or

voxels predicts what they do, only that they do predict it. The

question ‘‘why?’’ is answered with an estimation of construct

validity. Construct validity refers to a measurement’s ability to

assess an idealized psychological process or state and only that

process or state (Cronbach & Meehl, 1955). When we ask

questions about the function of any localized set of voxels, we are

asking a question about the construct validity of those BOLD

responses. Construct validity can only be established by show-

ing that a measurement is associated with an interlocking set of

variables (a nomological net) that is dictated by theory; it can

never be established with a single validity coefficient. Fur-

thermore, construct validity must show that a measurement is

consistently related to a set of criterion measures (i.e., it must

show convergent validity) and that it is specific to that construct

(i.e., it must show discriminant validity).

Just as there is no ‘‘true’’ measure of reliability, there is no

‘‘true’’ measure of validity. A measurement can have criterion

validity without having construct validity. Scale 8 on the MMPI

can differentiate groups of patients without measuring the es-

sence of schizophrenia (albeit we now know that there is no

essence to schizophrenia or to any other mental illness). Simi-

larly, BOLD responses in the amygdala can be effective in

predicting whether or not the viewed stimulus is a fearful face,

but this does not mean that the amygdala’s function is to compute

or represent fear.

Now, as it turns out, X 5 T 1 E is an overly simple equation.

And this makes things confusing, particularly when it comes to

figuring out what kind of error we are dealing with. In fact, the

equation should really be rewritten as X 5 (T 1 Ec) 1 Er, where

Ec refers to systematic error variance (or the variance of some-

thing that we do not care about that is inadvertently measured

with some consistency) and Er refers to random error variation

that is not repeatable. T 1 Ec refers to the variance in an ob-

served measurement (X) that is repeatable and is estimated with

some form of reliability analysis. Because there are two kinds of

error that can be found in observed measurements (X), sepa-

rating signal (T) from noise (Ec or Er) can be even trickier than

was first assumed.

There are instances when random error (Er) inadvertently

masquerades as true score variance (noise is being treated as

signal). In such cases, we run the risk of overestimating an ob-

served correlation between a BOLD response and its criterion

relative to its true population value. This is what it means to

‘‘capitalize on chance.’’ This is the risk that is inherent when we

estimate reliability and validity with the same data coming from

the same sample using the same (or strongly related) statistical

comparisons. And as Vul et al. illustrate, this risk is real and

potent with functional imaging data. When the method used to

select measurements (whether items or voxels) is not indepen-

dent of the subsequent tests performed on those measurements,

random error (variance that exists only in this measurement

moment) creeps into the estimate of T and can correlate with

the dependent variables of interest, inflating the magnitude

of the statistical result. So, if we use an external criterion (such

as looking at affectively negative pictures) to identify voxels

showing a significant change in activation, and then we correlate

the negativity of the slides to the change in BOLD response in

those voxels, the resulting correlation coefficient will likely be

inflated from its true population value. And if we then interpret

this correlation as a validity coefficient, we have almost cer-

tainly capitalized on chance. This kind of mistake cannot be

dealt with by making corrections for multiple comparisons. Such

comparisons cannot protect us from the fact that when the exact

same measurements are taken at another point in time or on

another sample, the magnitude of the correlation will shrink.

This kind of shrinkage is a well-known problem in regression

analysis, because regression coefficients, not coincidentally, are

mathematically equivalent to correlation coefficients of one type

or another.

Furthermore, the risk of capitalizing on chance exists when-

ever test–retest reliability is low. For example, we could observe

a large coefficient alpha (strong internal consistency) or strong

split–half reliability in a set of measurements that have lower

stability across time (low test–retest reliability) because some-

thing unexpected or undesired is influencing all the responses

within a single measurement moment. If this is true, then it is not

clear that we can avoid capitalizing on chance by splitting a data

set in half, so that half of the data from all participants is used to

determine reliability (i.e., to select voxels for analysis) and the

other half of the data can be used to estimate validity (i.e., to

determine what the BOLD activity in those voxels refers to or

means). As discussed further in Lesson 3 (later in this article),

the measurements from the first and second halves of a study

(from the same participants) are not independent, strictly
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speaking, and therefore cannot really be used for cross-valida-

tion. To estimate the degree of shrinkage in a correlation co-

efficient that is inherent in inadvertent instances of capitalizing

on chance, it is necessary to split a sample in half, using one set

of participants for voxel selection and another set for validity

estimation. This procedure is followed routinely for statistical

procedures such as discriminant function analysis (in which a

subset of items or variables is chosen from a larger available set

and then weighted to optimally predict some psychological

outcome).2 True replication can only be achieved with different

sets of participants.

Estimating reliability and validity separately can reduce the

risk of capitalizing on chance, but it does not protect against

spurious correlations (relationships that exist because of some

third, irrelevant cause). Spurious correlations can occur when

stable, nonrandom errors (Ec) are inadvertently estimated as

part of T (when there is some consistent variance in our mea-

surements that we do not care about or are not interested in). As

long as the systematic error is shared between the observed

measurements and their criterion, then estimates of validity

become spuriously inflated because the magnitude of the cor-

relation coefficient reflects something other than what we be-

lieve it does (such as method variance; Campbell & Fiske,

1959). This causes us to make mistakes about what physical

measurements mean in psychological terms. For example, the

MMPI uses a true–false response format. If we were to give a

group of respondents another test that required them to make

true–false judgments, scores on the two tests would be more

highly correlated because they share a response format and this

would be mistakenly estimated as true score variance. Similarly,

if we use ratings of negative pictures to identify those voxels

showing a significant change in activation, and then we take any

other measurement (such as a self-report measure of momentary

distress) that uses a similar rating scale, both will have similarly

high (or low) correlations with the change in BOLD response in

part because they share a similar response format. To separate

the systematic variance into that which we care about and that

which we do not care about, we must use multiple measures of a

construct and model systematic error variance with structural

equation modeling (e.g., Barrett & Russell, 1998).

LESSON 3: WITHIN-SUBJECT DEPENDENCIES

Now, it might seem as if we can avoid spurious correlations by

making sure that our estimates of construct validity involve the

use of a third measure that is relatively independent and free of

method variance or other unwanted shared features. With the

MMPI, perhaps the construct validity of the schizophrenia scale

items could have been quickly confirmed by correlating pa-

tients’ scores on the schizophrenia scale with another objective

criterion, such as ratings of hallucination severity provided by

the diagnosing clinicians. But this kind of a criterion would not

completely resolve the spurious correlation problem. The

validity coefficients would probably be high, for sure, but the

risk remains that the correlations could be inflated by systematic

error variance. This is due to the fact that, in our example, the third

measure (the additional criterion provided by the diagnosing clin-

ician) was not truly independent from the original criterion (the

diagnosis) used to select the items in the first place. A similar

problem is evident when estimating the reliability and validity of

BOLD activity with data from different measures sampled from the

same participants. If we use an external criterion (such as looking at

negative pictures) to identify those voxels showing a significant

change in activation, and then we take any other measurements

from the same participants (such as a self-report measure of mo-

mentary distress, reaction times to judge the pictures, or even trait

ratings of neuroticism) and correlate them with the change in BOLD

response in those voxels, there is always a risk that the resulting

correlation coefficient will be inflated from its true population value

if all the data are taken from the same sample of participants.

Multiple measurements sampled from the same individuals

are never truly independent from one another. Within-subject

dependencies exists even when the observed measurements are

supposed to be measuring very different psychological domains

in different modalities. Since the mid-1990s, behavioral sci-

entists have been statistically modeling within-subject depen-

dencies (using hierarchical linear modeling or multilevel

regression modeling; e.g., Laurenceau, Barrett, & Pietromona-

co, 1998).3

The within-subject dependencies are even more complicated

in neuroimaging experiments. Neurons are nested within col-

umns that are nested within voxels that are nested within brain

areas that are nested within individual brains that also produce

the behavioral estimates that are measured as criteria. Fur-

thermore, the BOLD signal from different voxels that are close in

proximity to one another are made even more dependent as a

function of preprocessing procedures (such as smoothing). The

fact that there are dependencies in the multiple measurements

taken from a single individual means that measures share some

variance over and above what is caused by the psychological

construct of interest, which in turn inflates the magnitude of

correlation coefficients (be they reliability or validity estimates).

For example, some factor that is irrelevant to the psychological

domain of interest (such as hormonal changes related to circa-

dian rhythms or to menstrual cycles in women, or blood volume

changes related to hydration) could lead a host of measurements

to have spuriously high correlations. In the behavioral realm,

these data dependencies have been shown to matter quite a bit,

2The logic of this practice for the analysis of BOLD data (i.e., the issue of
whether the same exact voxels are relevant for each and every participant) is an
important issue beyond the scope of this commentary.

3In the mid-1980s, behavioral scientists were measuring data dependencies
in other nested data structures, such as when children who are nested within
classrooms that are nested within schools (Raudenbush & Bryk, 1986), and
when measuring people who are nested within families that are nested within
neighborhoods (Duncan, Duncan, Okut, Strycker, & Hix-Small, 2003).
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and the final statistical results that are reported often depend on

whether these dependencies are modeled or not. It seems crit-

ically important, then, to deal with these dependencies in a

statistical sense when trying to determine the psychological

meaning of a physical measurement, especially when those

measurements are based on the brain (for a start, see Lindquist

& Gelman, 2009).

CONCLUSION

Without taking a stand on all the articles discussed in Vul et al.,

in large part because I have not read them all myself, I have tried

to show with a simple discussion of classical measurement

theory that Vul et al. tell an important cautionary tale about

the pitfalls of translating measurements of the brain into

knowledge about the mind. More important, I have tried to show

that these pitfalls are correctable: (a) don’t estimate reliability

and validity of the BOLD response simultaneously with the same

statistic (or related statistics) on the same data, (b) ensure that

error (whether random or systematic) is not mistakenly esti-

mated as true score variance through replication, and (c) model

the dependencies in measurements that are collected on the

same individuals or at least consider those dependencies when

interpreting your data.

If there is one true adage in psychology, it is that past behavior

is a great predictor of future behavior. Over the last 70 years, the

MMPI has been the subject of tremendous study and scientific

effort to fix the glaring problems surrounding its inception. Items

have been replaced to reflect changes in diagnostic practice.

The test has been renormed so that it reflects a broader popu-

lation than just those people living in Minneapolis and the

surrounding area in the 1930s. There has been an attempt to take

a more theoretically driven (deductive) approach to test con-

struction. And, of course, the various forms of reliability and

validity have been estimated separately for the various sub-

scales of the test. Every year, the MMPI contributes to the

millions of clinical assessments that are performed in hospitals,

mental health clinics, and research labs in many countries

around the world. There is no doubt in my mind that imaging

research is following the same path. In 70 years, when someone

writes the history of how measurements of the brain eventually

translated into knowledge about the mind, psychologists and

neuroscientists will marvel at how far we came.
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