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Large-scale brain networks in affective and social neuroscience:
towards an integrative functional architecture of the brain
Lisa Feldman Barrett1 and Ajay Bhaskar Satpute2

Understanding how a human brain creates a human mind

ultimately depends on mapping psychological categories and

concepts to physical measurements of neural response.

Although it has long been assumed that emotional, social, and

cognitive phenomena are realized in the operations of separate

brain regions or brain networks, we demonstrate that it is

possible to understand the body of neuroimaging evidence

using a framework that relies on domain general, distributed

structure–function mappings. We review current research in

affective and social neuroscience and argue that the emerging

science of large-scale intrinsic brain networks provides a

coherent framework for a domain-general functional

architecture of the human brain.
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One overarching goal in human brain imaging research is

to understand the physical responses of neurons (e.g.,

electrical, magnetic, blood flow or chemical measures

related neurons firing) in mental (i.e., psychological)

terms. At its inception, brain-imaging research not only

started with psychological ‘faculties’ such as emotions

(e.g., anger, disgust, fear, etc.), social cognitions and

perceptions (the self, person perception, etc.), as well

as non-social cognitions (e.g., memory, attention, etc.) and

perceptions (visual images, auditory sounds), and

searched for their correspondence in topographically dis-

tinct swaths of brain tissue (often on the assumption that

each constitutes it’s own mental ability as a specific

process). This faculty psychology tradition, bolstered

by often-implicit assumptions of modularity [1], carved

up human brain imaging research into at least three sister

disciplines — affective, social, and cognitive neuro-

science. Increasingly, this paradigm in the human

neurosciences has been criticized [2�,3�,4,5��,6,7], in large

part because the brain imaging research it inspired reveals

it to be misguided. Experimental tasks ranging widely

across the various neuroscience disciplines produce pat-

terns of results that are more similar than a faculty

psychology approach would suggest. Assumptions about

modularity, even in sensory cortices, are also in question.

Faculty psychology is not quite dead, however. Recent

methodological shifts have moved from topographical

attempts to locate faculties towards a systems neuro-

science approach (for a recent review, see [5��,8��]),
sometimes involving correspondingly misguided

attempts to map emotions, social cognitions, and non-

social cognitions and perceptions to distinct brain net-

works. Understanding the functions of the human brain in

psychological terms requires not only methodological

sophistication, however; it also demands a different

psychological conceptualization and set of constructs

for understanding how the brain accomplishes its

emotional, social, and cognitive/perceptual feats (cf.,

[2�,5��]). Over two decades of brain imaging data point

towards a framework where the human brain is intrinsi-

cally organized into domain-general, distributed func-

tional networks. Emotions, social cognitions, and non-

social cognitions (and perceptions, which for this paper

we include in the category ‘cognition’) can be thought of

as mental events (prompted by specific experimental

tasks, or arising as naturally occurring states) that are

constructed from interactions within and between these

networks that compute domain-general functions. In this

paper, we review recent research within affective and

social neuroscience that points towards this construction-

ist cognitive architecture of the brain that relies on dis-

tributed structure–function mappings.

Affective neuroscience: the nature of emotion
In the field of affective neuroscience, no topic has

received more attention than the brain basis of emotion.

Until recently, scientists were largely convinced that

anger, fear, sadness, happiness, and disgust, as emotional

faculties, arise from separate, innate, culturally universal

neural modules in the brain (for a review see [5��,9��]). In

the typical brain imaging study of emotion, participants

are asked to cultivate an emotional experience from

viewing images or movies, by remembering previous

experiences or perceiving an emotion in posed facial

expressions (such as smiles, scowls, pouts, etc.), in non-

linguistic vocalizations (such as sighs, shouts, etc.) or in

body postures during brain imaging. Recently, two
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large-scale statistical summaries (i.e., meta-analyses) of

human neuroimaging studies (covering studies published

between 1993 and 2011) have demonstrated that anger,

sadness, fear, disgust, and happiness cannot be localized

to activity in specific topographical regions of the human

brain using such tasks [9��,10�].1 Brain regions such as the

amgydala, anterior insula, pregenual and subgenual

anterior cingulate cortex, and orbitofrontal cortex (once

considered to be the brain locations of fear, disgust,

sadness, and anger, respectively) demonstrate remarkably

consistent increases in activity during a variety of

emotional states indicating that these regions lack the

specificity that is the hallmark of an emotion faculty

perspective (see Figure 6 in [9��]).2

Nonetheless, the belief that emotions can be localized

somewhere in the brain is very strong (see [11�,12�] for

discussions), and efforts at topographical localization have

given way to the hypothesis that emotions can be loca-

lized to specific brain networks (e.g., [13,14]). According

to a emotion faculty approach, emotions are homologous

in non-human mammals and universally inherited in

humans, so the corresponding hypothesis would be that

362 Social and emotional neuroscience
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Each pie chart depicts the relative frequency with which various mental functions are discussed in the context of increased activation within the

‘executive control’ network (top left), the ‘salience’ network (top right), the ‘mirroring’ network (bottom left), and the ‘mentalizing network’ (bottom right)

as obtained using the Neurosynth database including over 6000 publications from over 50 journals [107].

1 Vytal and Hamann [10�] interpret their findings as evidence that

different emotions are localized to distinct topographical regions of the

brain, but their results show spatial overlap in activations that prelude

such an interpretation. Instead, studies that require participants to

cultivate different emotions produce consistent activations that overlap

significantly with one another.

2 It is tempting to assume that this lack of specificity is a function of

coarse spatial and temporal resolution in brain imaging experiments on

the grounds that careful optogenetic, lesion, and molecular neuroscience

research has revealed the circuitry that supports ‘emotional’ behaviors

such as freezing, attack, and withdrawal; but there are a number of

empirical and philosophical arguments regarding why the circuitry for

certain behaviors cannot be understood as evidence for the neurobiology

of emotions per se (for a discussion, see [11�,12�]).

Current Opinion in Neurobiology 2013, 23:361–372 www.sciencedirect.com
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emotion networks should be anatomically constrained

(and can therefore be inherited) and are homologous with

networks that exist within the brains of other animals.

The science of ‘intrinsic’ network connectivity represents

a prime candidate for identifying emotion networks

according to these criteria (see Box 1). Recent research

from our lab casts doubt on the specific emotion network

hypothesis, however. Using a ‘seed and discovery’ process

for revealing intrinsic brain networks in task-independent

(i.e., resting-state) fMRI BOLD data from 389 individ-

uals, we demonstrated that distributed, anatomically-con-

strained networks for each emotion do not exist within the

intrinsic architecture of the human brain [15]. Instead, the

most reliable sources of activation during states of anger,

sadness, fear, and disgust (as obtained from meta-analytic

results) each produced a discovery map whose spatial

overlap yielded the intrinsic network referred to as the

‘salience’ network [16] or the ventral attention network

[17,18] (see Box 2). A recent fMRI study from our lab

confirms that nodes within the ‘salience’ network (see

Table 1) independently track feelings of pleasure and

distress (medial orbitofrontal cortex) and feelings of

arousal (amygdala) during both pleasant and unpleasant

instances of happiness, sadness, and fear [19��].

The nodes within the ‘salience’ network not only lack

specificity for discrete emotions, but also are not specific

to the broader domain of emotion per se (see Figure 1),

consistent with criticisms of the limbic system concept.

For example, regions within the amygdala are not only

engaged during emotional states, but also show reliable

increases in activity when people are asked to process

novel material, even when such material is neutral and not

explicitly affectively evocative (e.g., [20�,21��,22]). The

amygdala also shows degeneration that is equivalent to

hippocampal degeneration in the early stages of Alzhei-

mer’s disease [23�]. Together, these findings suggest a

role for the amygdala in the processes supporting encod-

ing and retrieval, even for material that is ‘non-emotional’

or is not explicitly potent affectively. Other research

shows that the amygdala is important for processes sup-

porting perception and attention [24]. Furthermore, the

amygdala has also long been implicated in social cogni-

tion, both within humans (e.g., [25]) and in comparative

studies of non-human primates [26]. Recent research has

demonstrated that humans with larger amygdalae charac-

terized by stronger intrinsic connectivity to other brain

regions such as the ventromedial prefrontal cortex,

superior temporal sulcus, and fusiform gyrus are able to

form and maintain larger and more complex social net-

works, both in face-to-face [27��,28�] and online [29�]

An integrative functional architecture of the brain Barrett and Satpute 363

Box 1 Networks that are intrinsic to the brain’s architecture

The human brain is organized into large-scale ‘intrinsic’ networks

reflecting strong temporally-organized coupling of activity across

widely distributed brain regions, taking up a large proportion of the

brain’s metabolic budget [90�,91]. Intrinsic networks have been

observed during mental states that arise independent of any task or

external stimulus ([16,92,93�], for a review see [8��]), that arise in

response to specific tasks, and that occur during various states of

consciousness, including sleep and sedation (e.g., [94–96]). And

importantly for questions about the nature of emotion, intrinsic

networks are structured by anatomical connectivity [97,98�,99,100]

influencing oscillations within the gamma frequency range [101], with

several networks identified in non-human primates [102–105,106�]. A

major focus of current research is to understand how these networks

are related to psychological functions. We propose that these

networks underlie domain general functions that cut across the

boundaries stipulated by faculty psychology (i.e. the boundaries

presupposed by social, affective, cognitive, and perceptual neuros-

ciences). Instead, activity across networks and interactions between

them give rise to the experienced mental states as Gestalts that are

then categorized as one or the other of these faculties.

Box 2 Intrinsic connectivity in the human brain does not reveal

emotion networks

Using a seed-based analysis approach, we [15] designed a method

for revealing intrinsic networks within the human brain, first

demonstrating that this method can recover the brain’s well-known

‘default’ mode network but does not produce spurious evidence of

networks. First, we treated pre-defined nodes of the ‘default’ mode

network as seeds (e.g., medial prefrontal cortex and posterior

cingulate cortex, following [47��]). For each seed, we estimated a

‘discovery map’ that contained the voxels whose time-course

correlated with the timecourse of voxels within the seed region. A

conjunction of these ‘discovery’ maps recovered the ‘default’ mode

network as single map of their spatial overlap. Using a similar ‘seed

and discover’ method, we then ran a control analysis to show that

nodes from auditory, visual, and motor cortices produce a

conjunction map that is empty, indicating that our method would not

produce spuriously results. Finally, we used our ‘seed and discover’

method on meta-analytic activation peaks that were consistently

activated for anger as reported in [10�] because this meta-analysis

was explicitly designed to reveal maximally distinct neural patterns

for different emotion categories; the conjunction of all the ‘discovery

maps’ was empty, indicating that a distributed, anatomically-inspired

networks for anger does not exist within the intrinsic architecture of

the human brain. We repeated this analysis, with the same result, for

the peaks that consistently activated during sadness, fear, disgust,

and happiness. Furthermore, a conjunction of the discovery maps

derived from the largest meta-analytic peaks for each negative

emotion (anger, disgust, fear, and sadness) reproduced the

‘salience’ network, indicating that this network is a common

contributor to at least four unpleasant emotional states.

Note: The conjunction map (N = 89) for meta-analytic ally inspired

anger, disgust, fear, and sadness discovery maps. Yellow indicates

spatial overlap for all negative emotion maps. Light orange indicates

spatial overlap for three of the four maps. Orange indicates spatial

overlap for two of the maps. Red indicates no spatial overlap.
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Figure 2
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groupings. There is even some indication that increases in

amygdala volume occur as the result of pressures associ-

ated with living in larger social groupings [30��].

More broadly, nodes within the ‘salience’ network are

engaged during a variety of psychological domains, in-

cluding during empathy (e.g., [31,32,33�]), language and

executive function tasks [34], and during attention allo-

cation [17]. These nodes are thought to play some role in

the brain’s ‘switching’ or ‘reorienting’ between ‘internal’

and ‘external’ events [17,35]. The spatial topography of

the ‘salience’ network is highly similar to an ‘aversion’

network whose major hub is in the amygdala (see Figure 3

in [27��]). It is possible that the ‘salience’ network sup-

ports a variety of different psychological mechanisms (cf.

[8��]). Such multiple functions make it all but impossible

to infer the presence of a single process from a neural

response in nodes of the network (called reverse infer-

ence; [36]). In addition, the lack of domain specificity in

‘salience’ network engagement suggests the possibility

that brain imaging is too spatially and temporally coarse to

permit meaningful functional interpretation.

Yet an intriguing possibility is that the anatomic connec-

tions within the nodes of the ‘salience’ network, along

with their temporal dynamics, together perform a

An integrative functional architecture of the brain Barrett and Satpute 365

Table 1

Distributed structure–function mappings for selected intrinsic networks

Network Major nodes Functional description

‘Salience’/‘Ventral Attention’ [16–18,92,93�] Anterior cingulate cortex (ACC), bilateral

anterior insula

Dorsal subnetwork: using representations

of homeostatic and metabolic information

from the body to guide attention and motor

behavior

Ventral subnetwork: representing

homeostatic and metabolic information as

affective feelings that are a basic feature of

all conscious states

‘Default’/‘Mentalizing’ [47��,50,92,93�] Medial prefrontal cortex, retrosplenial area,

posterior cingulate cortex/precuneus, medial

temporal lobe (hippocampus, entorhinal cortex),

bilateral superior temporal sulcus

Conceptualization by representing prior

experiences (i.e., memory and category

knowledge) to construct a mental model of

the past, the present moment, or the future

Dorsal subnetwork: an emphasis on

abstract, third-person experience

Ventral subnetwork: an emphasis on first-

person, embodied experience

‘Executive Control’ [16,92,93�] Bilateral dorsolateral prefrontal cortex, inferior

parietal lobe, inferior parietal sulcus, precuneus,

and middle cingulate cortex (mCC)

Increasing or decreasing the firing rate of

neurons in accordance with current goals

‘Dorsal Attention’ [17,92,93�] Bilateral frontal eye fields, dorsal posterior

parietal cortex, fusiform gyrus, area MT+

Visuospatial attention

Limbic [93�] Medial temporal lobe, anterior

cingulate cortex, medial and lateral

orbitofrontal cortex, amygdala,

ventral striatum, periacqueductalgray

Regulation and representation of the body’s

core (i.e., visceromotor regulation and

representation)

Note: In the interest of space, not all intrinsic networks are listed here. Other networks not listed include sensorimotor, motor, and visual networks

[92,93�] and a language network [51]. The analysis identifying the ‘limbic’ network [93�] does not include subcortical structures that are known to be

involved in visceromotor regulation based on their known anatomical connections, including the basal ganglia, which are involved in orchestrating

effortful behavior and motor control, the central nucleus of the amygdala, which is involved in regulating autonomic responses, and the midbrain

periacqueductal gray, which is involved in coordinating coherent physiological and behavioral responses. The ‘mirroring’ network is not listed here

because it is a collection of regions that show task-related functional connectivity rather than a network that is intrinsic to the brain’s architecture; it

shares roughly half of its spatial topography with the ‘dorsal attention’ network (associated with sensory orienting) as well nodes within the motor

network. It was defined initially by a class of ‘mirror neurons’ which respond both when the self performs an action (e.g. ripping a piece of paper,

grasping a pair of scissors) and when perceiving another person perform the same action [[62�,63], but see [67]]. Some authors [63] also posit a ‘limbic

mirror system’ that they believe is devoted to perceiving affective behavior, but the regions of this network largely overlap with the ‘salience’ network.

The progression from a faculty psychology/modular approach towards a constructionist/distributed structure approach to brain-function inferences. In

(a), individual brain regions specifically compute a domain-specific psychological faculty that could be isolated with a domain-specific behavioral task.

In (b), domain-specific brain networks interact to produce responses within domain-specific tasks. (c) Functional motifs within domain-general intrinsic

brain networks interact to produce a wide variety of tasks; dotted lines indicate that every network is not necessary engaged to support every task

response. Constellations of subprocesses likely underlie each higher order functional description (e.g. ‘motor movements’ can be broken down into

layers of motor selection, involving lateral inhibition, etc.). We utilize the higher order process descriptions in this figure to highlight the point that even

at a higher order of description, the processes comprising ‘somatovisceral regulation’ are domain-general processes that are not specific to emotion,

the processes comprising ‘mentalizing’ are not specific to social cognition, and so on.

www.sciencedirect.com Current Opinion in Neurobiology 2013, 23:361–372
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domain-general function supporting a range of tasks cross-

ing the boundaries of emotion, social cognition, and non-

social cognition. For example, anatomical connections

indicate that nodes within the ‘salience’ network are

important for autonomic and hormonal regulation and

representation [37,38�,39–42], making it reasonable to

hypothesize that in a given moment, the ‘salience’ network

functions to orient the brain’s processing capacity towards

the most homeostatically-relevant and metabolically-

relevant information — it performs a body-based source

of attention within the human brain. If a stimulus or event

has homeostatic or metabolic implications (or the brain

predicts these implications based on prior experience;

[43�]), then the ‘salience’ network will be engaged, helping

to allocate processing resources towards that stimulus.

The idea that the ‘salience’ network might be domain-

general does not preclude the possibility that it contains

spatial gradients or subnetworks that are relatively more

engaged for certain types of tasks. For example, the dorsal

subnetwork of the ‘salience’ network (most clearly invol-

ving connections between the dorsal anterior insula and

dorsal ACC) seems to be especially important for spatial

orientation and selecting motor actions (i.e., response

selection) necessary for executing goal directed behavior

(e.g., [44��]); the ventral subnetwork (involving connec-

tions between ventral anterior insula and pregenual ACC

extending to the subgenual ACC) appears to be important

for directing selection in the ‘visceromotor’ (or autonomic

nervous system) responses that support motor actions,

maintain homeostasis, and serve as the basis of affective

feelings. This hypothesis is consistent with our recent

finding that the strength of intrinsic connectivity within

the ventral ‘salience’ subnetwork is uniquely correlated

with the intensity of affective experience, whereas con-

nectivity within the more dorsal subsystem is uniquely

correlated to motor control and changing mental sets [45��].

Evidence from our meta-analyses on the brain basis of

emotion more broadly supports a domain-general approach

to distributed structure–function mappings. Some of the

voxel clusters showing consistent increases in activation

during anger, sadness, fear, disgust, and happiness appear

within nodes of several of the brain’s intrinsic networks that

are typically not considered to fall within the emotion

domain (Table 1; also see [9��]). For example, during

emotional states, activity consistently increases within

the ventromedial and dorsomedial prefrontal cortex and

in the posterior cingulate cortex/precuneus regions — key

nodes within the brain’s ‘mentalizing’ network [46], also

referred to as the ‘default mode’ network [47��]; this net-

work routinely and robustly engaged when remembering

personal events (autobiographical memory), when imagin-

ing the future (prospection), during moral cognition and

reasoning, when accessing memory for word meanings

(semantic memory), during scene construction and con-

text-based object perception [47��,48,49�,50] and during

instances of social affiliation (discussed in [27��]). In

addition, our emotion meta-analysis revealed consistent

increases of activity in the lateral prefrontal cortex, which is

a key node within ‘central executive’ and ‘language’ net-

works [16,17,51]. These nodes within the ‘mentalizing’,

‘executive’, and ‘language’ networks show a consistent

increase in activation during a range of different emotions

and more general affective states [9��,52��]. A recent fMRI

study from our lab found that several of these nodes

produced consistent increases in activation during anger

and fear experiences that occur when imagining a variety of

social threat and physical danger scenarios [53], and show

increased network cohesion when watching movies

designed to evoke sadness [54]. Moreover, a recent neu-

roimaging study that directly compared patterns of net-

work activity during emotions, thoughts, and bodily

feelings confirmed that nodes within these networks are

engaged across these different psychological domains [55].

Taken together, the search for the distinct brain corre-

lates of different emotions, inspired by faculty psychol-

ogy, has produced evidence of an entirely different

functional architecture of the brain — one with broadly

distributed functional networks that interact to produce a

range of emotional states. In the next section, we discuss

how these networks are not limited to constructing

instances of anger, sadness, fear, disgust, and happiness.

Social neuroscience: person perception and
the self
In the domain of social neuroscience, a key question

concerns how one person’s mind creates the perception

of another person as having intentions, beliefs, morals,

traits, and so on. Much of this research has been guided

by prominent social cognition theories developed in the

1980s and 1990s, referring to these abilities as ‘person

perception’, ‘mind perception’, ‘ordinary personology’,

or ‘mental state attribution’ [56–59]. Although early

research in social neuroscience attempted to locate social

cognitive processes in individual brain regions, such as the

dorsomedial prefrontal cortex or the temporoparietal junc-

tion, the move towards a systems neuroscience approach

quickly developed as dozens of studies showed that the

neural correlates of person perception spanned regions that

appeared to organize themselves into networks. Several

meta-analyses [60�,61�] indicate that studies of person

perception consistently report increased activation in

regions comprising the ‘mentalizing’ network mentioned

above, and in a ‘mirroring’ network, (which shows an

increase in activation when a person is detecting the

goal-directed, voluntary movement of body parts, and

includes the premotor cortex, superior temporal sulcus,

and inferior parietal lobule; [62�,63]) (see note in Table 1).

Currently, an overarching goal in social neuroscience has

been to understand the distinct functional contributions

of the ‘mentalizing’ and ‘mirroring’ networks during

366 Social and emotional neuroscience
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instances of person perception. For example, studies

suggest that the ‘mirroring’ network appears to be more

associated with representing instrumental motor move-

ments (e.g. facial movements and bodily gestures) while

making inferences about their mental meaning, whereas

the ‘mentalizing’ network is more strongly associated

with representing context information that allows mental

state inference to occur [64�]. The ‘mirroring’ network

also appears to be relatively more engaged when physical

movements are perceived as discrete behaviors (called

‘action identification’; e.g., someone shredding paper),

whereas the ‘mentalizing’ network is relatively more

engaged when making inferences about the goals of those

actions (e.g., ‘destroying evidence’) [65�,66��]. This

research has inspired hypotheses for how the two net-

works communicate and interact with each other. One

hypothesis is that the networks act in parallel, at times

cooperating and other times competing during person

perception [64�]. Another hypothesis is that the two are

hierarchically related, with the ability to form abstract

mental state attributions being dependent on the ability

to observe and represent actions in more concrete terms

first [65�,66��]. Interestingly, observed actions appear to

engage the ‘mirroring’ system after their meaning has

been inferred (cf. [67]), perhaps within the neural context

of an active ‘mentalizing’ network.

Network approaches to understanding person perception

have, in a sense, revived domain-general insights in social

perception from over fifty years ago. For example, a recent

study of emotion perception [68��] finds that perceiving

physical actions as emotional expressions involves an inter-

action between nodes of both the ‘mirroring’ and ‘mentaliz-

ing’ networks, placing emotion perception within the more

general domain of person perception (as originally

suggested by [69]). This social perception framework has

been recently extended to understand how people con-

struct emotional experiences by making mental state infer-

ences about bodily changes [11�,70]. The hypothesis is that

people are engaging in a form of mental state inference

when they simultaneously categorize their (interoceptive)

bodily sensations using conceptual knowledge about

emotion.3 Taking this perspective, a recent study has shown

that making mental state attributions about one’s own

affective states (e.g. ‘I feel good’) indeed involves nodes

within the ‘mentalizing’ network, the ‘executive control’

network, and the ‘salience’ network [71��].

A sense of personal identity (referred to as ‘the self’) is

another topic of interest in social neuroscience [e.g.

[72,73]]. Early theorizing in social cognition conceived

of the self as resulting from a powerful, domain-general

memory system [74], and foreshadowed recent meta-

analytic discoveries that report consistent activation in

the ‘mentalizing’ network when people create mental

state inferences and trait judgments about the self (i.e.

judging the self as an object, as when self-reflecting

[60�,61�,75,76], also see [77,78]), including when proces-

sing one’s own name or seeing one’s own face (termed

‘self-specific activity’; [79]). Moreover, autobiographical

memory (which routinely engages the ‘mentalizing’ net-

work; [50,79]) has been discussed as a precondition for

mental states that create a sense of self [80].

Just as with the ‘salience’ network, a variety of functions

have been attributed to the ‘mentalizing’ network (see

[47��,50]), but it is possible that the network is performing

one basic function across social, affective, and cognitive

domains. We hypothesize that the nodes of the mentaliz-

ing network interact to create an inferential, conceptual

system [2�] that creates situated conceptualizations: these

are the multimodal simulations that are strongly situated

in a particular background context making meaning of

sensory input and supporting specific courses of action

[11�,70,81]. Our hypothesis is that the ‘mentalizing’ net-

work orchestrates the associative recombination of stored

information (both abstract and embodied) to create not

only instances of cognition but also instances of emotions

and perceptions of people and events in the world. Such a

proposal is consistent with the view that every waking

moment of life is an instance of the ‘remembered present’

[82]. It is also consistent with the hypothesis that the

‘mentalizing’ network constructs mental models or simu-

lations that facilitate future behavior [50]. Remembering,

thinking about the future, taking another person’s

perspective, as well as understanding the cause and con-

sequences of your own bodily feelings all depend on the

ability to draw on stored experiences to create a mean-

ingful mental moment in the present. Sometimes, the

present moment is created with minimal input from the

senses (as in mindwandering or prospection); studies of

internally-driven or endogenous mentation (i.e. menta-

tion that is not sustained by a concrete task set forth by

the experimenter) have robustly demonstrated the

engagement of the ‘mentalizing’ network. At other times,

the brain’s task is to make meaning of the current sensory

array (to understand what sensations stand for in the

world); brain imaging evidence indicates that this net-

work is also engaged when the brain’s task is to create

predictions about what sensory input refers to in the

moment (e.g., during object perception, person percep-

tion, or emotion; e.g., [9��,48,83]).

By explicitly comparing ‘mentalizing’ network activations

during judgments of self versus others [[61�], also see
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3 The broader hypothesis is that people use conceptual knowledge to

categorize incoming sensory input from the body (interoceptive input)

and from the world (exteroceptive input) to create a ‘situated concep-

tualization’ — a perception of these sensations as meaningfully referring

to something in a particular context. A situated conceptualization is a

conceptual act, producing perceptions of emotion in the self (e.g., a

feeling of anger), perceptions of emotion in others (e.g., a smile as an

anger expression), as well as a range of other cognitive and perceptual

events.
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[73]], it is possible to hypothesize that a dorsal ‘mentaliz-

ing’ subnetwork is relatively more engaged in creating

situated conceptualizations when abstract, ‘third-person’

information is required to make a judgment (such as

knowledge about mental state categories, scene construc-

tion, etc.), whereas a more ventral ‘mentalizing’ subnet-

work appears to be relatively more engaged when more

embodied, ‘first-person’ information is required to make a

judgment (e.g., bodily sensations or feelings related to

homeostasis), referred to as the ‘dorsomedial’ and ‘medial

temporal lobe’ subnetworks, respectively [47��]. In sup-

port of this view, there is a spatial gradient within the

medial prefrontal cortex (a key node of the ‘mentalizing’

network), with more ventral activations in evidence

during self-related judgments, during autonomic and

endocrine regulation, and during the processing of pain

and rewarding stimuli, whereas more dorsal activations

are relatively more in evidence during other-related judg-

ments, as well as during occasions of memory and mind-

wandering which often involve viewing and evaluating

the self as an object [61�,84]. Similarly, nodes within the

dorsal subnetwork of the ‘mentalizing’ network are rela-

tively more engaged when perceivers create abstract

representations of other people (sometimes termed

‘meta-cognition’), whereas the more ventral nodes are

relatively more engaged when people use their own

internal state as a way of inferring what someone else

is thinking or feeling (termed ‘self-projection’; [85]).

Interestingly, we predict that during mental states that

require first-person information, we might see more inter-

network connectivity between the ventral ‘mentalizing’

subnetwork and the ‘salience’ network. Consistent with

this hypothesis, two meta-analyses report increase in

activation for several nodes within the ‘salience’ network,

including the insula and the anterior cingulate cortex,

particularly for self-related judgments [61�,86�].

A constructionist functional architecture of
the brain
Figure 2 summarizes the transition in human neuro-

science research away from the search for domain-specific

neural modules towards the discovery of large-scale,

domain general networks that are distributed in both

their structure and function. There are three take-away

hypotheses from this figure. First, a psychological faculty,

such as fear, or the ability to perceive the traits or mental

states of another person (or other faculties we have not

discussed here, such as working memory [87]), is not a

process that can be probed in an unadulterated way by a

single task; each faculty represents a category of phenom-

ena — a collection of instances — that are constructed via

the interaction of more basic, domain general processes,

which themselves map to networks that emerge from

neural integration across time and space within the brain.

Second, the experimental tasks that are currently in use

within affective, social, and cognitive neuroscience do not

themselves reflect individual processes; the responses to

those tasks are constructed via the interaction of more

basic, domain-general processes and their corresponding

distributed networks. Third, scientific progress will be

speeded not by trying to localize psychological faculties to

topographical brain regions or even to individual net-

works, but instead by modeling responses to experimen-

tal tasks as high-dimensional brain states (reflecting the

engagement of domain general networks, their internal

operations, and their interactions).4

From this perspective, then, the distinction between

social, affect, and cognitive neuroscience is artificial. There

is no ‘affective’ brain, ‘social’ brain, or ‘cognitive’ brain.

Each human has one brain whose functional properties can

be understood differently for different time scales and

levels of organization. At the level of human brain imaging,

we are suggesting that the data point towards a single

systems neuroscience framework that spans psychological

domains. In such a framework, the brain contains a set of

intrinsic networks that can be understood as performing

domain-general operations; these operations serve as the

functional architecture for how mental events and beha-

viors are constructed. We are not suggesting that all

neurons within a network have exactly the same (general)

receptive field, or that all neurons within a network fire

every time the network is engaged. Instead, we are

suggesting that, at the level of brain imaging, a neuron’s

function can be understood in the context of neural

responses within the network (i.e., the function is distrib-

uted across the assembly of neurons within the network

that are active at a given point in time), and this function is

domain-general. Each of these ‘‘core systems’’ in the brain

does not produce one distributed pattern of response.

Instead, instance by instance, the function of the core

system corresponds to a set of ‘functional motifs’ arising

from the ‘structural motif’ that undergirds each network

(for a discussion of motifs, see [88]). A similar approach has

recently been proposed for improving the characterization

and treatment of psychopathology and neurodegenerative

diseases [89�].

By shifting the empirical emphasis from the search for

mental faculties as unified neurobiological categories

towards developing a more componential, constructionist

functional architecture of the human brain, the overlap in

empirical findings across psychological domains is not a

problem for reverse inference, but becomes the engine

that drives a more valid approach to reverse inference.

Debates about whether emotions are a special case of

social cognition, or whether person-perceptions are a

special case of memory recede to be replaced an approach

that attempts to build a domain-general understanding of

how the brain creates the mind.
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methods that target and isolate particular domain-general functions.
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