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General Article

The goal of this tutorial is to familiarize readers with 
aspects of signal detection theory (SDT; Green & Swets, 
1966; Macmillan & Creelman, 1991) that stem from using 
it as a model of optimal decision making. SDT character-
izes how perceivers separate meaningful information 
from “noise.” It is widely used to measure performance 
on perception, memory, and categorization tasks. In the 
realm of social perception, for example, when interact-
ing with someone, it is advantageous to know whether 
the person is angry (and likely means you harm) or not. 
Signals such as the person’s facial expression inform this 
judgment. SDT is particularly useful in situations of 
uncertainty and risk. Uncertainty is present when the 
alternative options are perceptually similar to one 
another (e.g., a scowling facial expression sometimes 
means that the person is angry and sometimes means 
that the person is merely concentrating). Risk is present 
when misclassification carries some relative cost (e.g., 
when failing to correctly identify someone as angry 
incurs punishment that would otherwise have been 
avoided).1

Overview of SDT

SDT’s power as an analytic tool comes from separating a 
perceiver’s behavior into two underlying components, 
sensitivity and bias (see Précis of Signal Detection Theory 
in the Supplemental Material available online). Sensitivity 
is the perceiver’s ability to discriminate alternatives: tar-
gets (e.g., a person who is angry) versus foils (e.g., a 
person who is not angry). Response bias is the perceiver’s 
propensity to categorize stimuli as targets rather than 
foils and is described as liberal, neutral, or conservative. 
For example, if failing to correctly identify threat is rela-
tively costly (resulting in, say, psychological or physical 
punishment), or if targets are common relative to foils, 
then a perceiver might treat equivocal stimuli as threaten-
ing targets rather than safe foils (a liberal bias, in which 
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Abstract
What do inferring what a person is thinking or feeling, judging a defendant’s guilt, and navigating a dimly lit room 
have in common? They involve perceptual uncertainty (e.g., a scowling face might indicate anger or concentration, 
for which different responses are appropriate) and behavioral risk (e.g., a cost to making the wrong response). Signal 
detection theory describes these types of decisions. In this tutorial, we show how incorporating the economic concept 
of utility allows signal detection theory to serve as a model of optimal decision making, going beyond its common 
use as an analytic method. This utility approach to signal detection theory clarifies otherwise enigmatic influences of 
perceptual uncertainty on measures of decision-making performance (accuracy and optimality) and on behavior (an 
inverse relationship between bias magnitude and sensitivity optimizes utility). A “utilized” signal detection theory offers 
the possibility of expanding the phenomena that can be understood within a decision-making framework.
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even mildly scowling faces are treated as angry). If, 
instead, incorrectly identifying a stimulus as a threat is 
relatively costly (resulting in, say, embarrassment arising 
from a misperceived need to apologize), or if targets are 
uncommon relative to foils, then a perceiver might treat 
equivocal stimuli as safe (a conservative bias, in which 
only strongly scowling faces are treated as angry).

SDT is applicable across a spectrum from perceptual 
to conceptual domains. In fact, a diverse array of nonpsy-
chophysical “perceptions” have been treated as involving 
issues of signal detection. The SDT framework has been 
used to examine eyewitnesses’ identification of suspects 
(Clark, 2012), decisions to place children in foster homes 
(Ruscio, 1998), memory (Wixted & Stretch, 2004), cancer 
detection (Abbey, Eckstein, & Boone, 2009), statistical 
hypothesis testing (Green & Swets, 1966), and diagnostic 
decisions more generally (Swets, Dawes, & Monahan, 
2000). Here, we use social-threat detection as an example 
to illustrate our points (see the Supplemental Material for 
additional examples across the perceptual-conceptual 
spectrum: interoception, social perception, jury delibera-
tion, and navigation speed).

Despite SDT’s breadth of application, it is largely used 
in a descriptive way to compare sensitivity and bias across 
study conditions or people. For example, in a previous 
study, people with current depression exhibited decreased 
sensitivity for emotion perception, and people with remit-
ted depression exhibited increased sensitivity and more 
neutral response bias for emotion perception, relative to 
control groups (Anderson et al., 2011). Yet SDT has much 
more to offer as a generative model of decision making. 
Combining SDT’s treatment of perceptual uncertainty with 
the behavioral-economic concept of utility (the net benefit 
expected to accrue from a series of decisions) highlights 
important aspects of decision making overlooked both by 
typical applications of SDT and by traditional models of 
decision making that focus on utility alone.

The Utility of Perception

According to the utility-based approach to SDT, three 
parameters characterize the uncertainty and risk within a 
specific decision environment.

•• Payoff: Every decision has its consequences. The 
payoff parameter describes the value of each of 
four possible decision outcomes: correct detec-
tions, missed detections, false alarms, and correc-
tion rejections (see Précis of Signal Detection 
Theory in the Supplemental Material). False alarms 
and missed detections incur relative costs to the 
perceiver, whereas correct rejections and correct 
detections impart relative benefits to the perceiver. 

In social-threat detection, for example, false alarms 
might lead to unnecessary apologetic disruptions 
of the social interaction or to unnecessary social 
avoidance, whereas missed detections might lead 
to punishment or other aversive outcomes.

•• Base rate: The base-rate parameter describes the 
perceiver’s probability of encountering targets 
(e.g., a person who is angry) relative to foils (e.g., 
a person who is not angry).

•• Similarity: Target and foil categories can be some-
what similar to one another, and this is the source 
of perceptual uncertainty. The similarity parameter 
models uncertainty by describing what targets and 
foils “look like.” For example, the physical similar-
ity of facial expressions associated with two emo-
tion categories can be modeled as Gaussian 
distributions over a continuous perceptual domain 
of facial expression intensity. There are two sources 
of perceptual uncertainty. Intrinsic sources are 
internal to the perceiver. They may include, for 
example, sensory-processing noise (e.g., Osborne, 
Lisberger, & Bialek, 2005), poorly learned discrimi-
nation (e.g., Lynn, 2005), and, at an abstract level, 
perhaps even confusion about the difference 
between conceptual categories. Extrinsic sources 
are external to the perceiver, arising from the envi-
ronment or the signaler. They may include, for 
example, environmental noise (e.g., Wollerman & 
Wiley, 2002), signal attenuation (e.g., Naguib, 
2003), and variation in signaler expressivity (e.g., 
emotional expressivity: Zaki, Bolger, & Ochsner, 
2009). Research in psychophysics often empha-
sizes intrinsic uncertainty. Research in applied 
decision making (e.g., medical diagnostics) and 
behavioral ecology often emphasizes extrinsic 
uncertainty.

It is well known that payoffs and the base rate influ-
ence bias (Green & Swets, 1966; Macmillan & Creelman, 
1991). Rare targets and costly false alarms promote a con-
servative bias (i.e., a higher threshold, or criterion, for 
judging that a target is present), whereas common targets 
and costly misses promote a liberal bias (i.e., a lower 
criterion for judging that a target is present; e.g., Quigley 
& Barrett, 1999). The perceptual similarity between tar-
gets and foils influences sensitivity (i.e., perceivers have 
greater sensitivity when targets and foils are less percep-
tually similar to one another; Green & Swets, 1966; 
Macmillan & Creelman, 1991). However, it is the utility-
based approach to SDT (which combines uncertainty 
with behavioral economics) that quantifies and predicts 
these relationships between environmental parameters 
and behavior.
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Establishing the Optimal Criterion 
Location

In the presence of perceptual uncertainty, mistakes can-
not be avoided. Consider, for example, the situation mod-
eled in Figure 1a. A liberal criterion (identifying anger in 
faces with a low percentage of scowling) minimizes 
missed detections but increases exposure to false alarms. 

A conservative criterion (identifying anger in faces only 
when they have a high percentage of scowling) mini-
mizes false alarms but increases exposure to missed 
detections. Therefore, perceivers should seek to optimize 
their criterion location—to adopt a criterion that maxi-
mizes expected utility, producing the optimal blend of 
missed detections and false alarms in light of the environ-
mental parameters.

Foils: What Nonangry Faces Look Like
Targets: What Angry Faces Look Like
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Fig. 1.  Illustration of how one person (the perceiver, or decision maker) might establish the 
optimal criterion location in evaluating facial expressions to gauge the threat presented by 
another person (the sender, or signaler). The payoff, base-rate, and similarity parameters can 
be combined to derive a utility function for the decision environment that they characterize 
(a). The location in the stimulus domain (x-axis) with the highest utility is the decision criterion 
location that will maximize benefit over a series of decisions (the criterion of correctly esti-
mated parameters). A simulated perceiver who misestimates payoffs (dotted utility function) 
may adopt a suboptimally neutral decision criterion (criterion of misestimated payoffs). This 
perceiver’s expected utility is dictated by the intersection (denoted by the asterisk) of his or 
her criterion and the utility function derived from correctly estimated parameters. The y-axis 
for the signal distributions (probability density) is not shown. The graph in (b) shows that this 
perceiver’s misestimate is suboptimal: The rate of utility gain (accumulation of points) over a 
series of trials is shallower than would have been the case if all the parameters had been esti-
mated correctly. Parameter values for these models are provided in the Supplemental Material.
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The SDT utility function uses the payoff, base-rate, 
and similarity parameters to calculate the expected value 
(to the perceiver) of placing a decision criterion at any 
given location in the perceptual domain (see The Signal 
Utility Estimator and Receiver Operating Characteristics, 
in the Supplemental Material). For example, it is possible 
to compute the expected utility of placing a decision cri-
terion at each facial expression along the continuum in 
Figure 1a. The criterion location with the highest expected 
utility will maximize net benefit over a series of deci-
sions. By modeling the environmental parameters that 
underlie bias and sensitivity, one can mathematically pre-
dict perceivers’ optimality within environments or experi-
mental conditions of a study or empirically compare 
perceivers’ optimality across environments or experimen-
tal conditions.

To implement these ideas within an experiment in a 
laboratory setting, one can create different decision envi-
ronments by assigning values to the three parameters (see 
Lynn, Cnaani, & Papaj, 2005, for an example with nonhu-
mans; see Lynn, Zhang, & Barrett, 2012, for an example 
with humans). Payoffs can be implemented behaviorally. 
For example, participants can earn or lose points depend-
ing on the outcome of each trial. In this way, it is possible 
to set unequal payoff outcomes (e.g., a missed detection 
and a false alarm might have different costs in a particular 
context). Outside the laboratory, payoffs may not be 
known or easily quantified, of course. In such cases, a 
ratio of payoffs might be used. For example, Clark (2012) 
explored the utility of eyewitness-lineup reforms using a 
10:1 ratio of the cost of missed detections (the perpetrator 
goes free) to false alarms (the wrong person is identified 
as the perpetrator). Base rate can be implemented as the 
proportion of targets to foils shown. The base rate can 
model, for example, the fact that some people with whom 
a perceiver interacts may be angry more often than other 
people. The similarity parameter can be implemented 
with targets and foils randomly drawn from their respec-
tive distributions imposed on a continuum of stimuli.

Because criterion location is a function of the three 
environmental parameters, suboptimal bias or sensitivity 
in a perceiver can be understood as a perceiver’s “misesti-
mate” of one or more parameters, which can result in sub-
optimal decisions (Fig. 1b). Individual differences, alone 
or in interaction with the decision environment, may influ-
ence parameter estimates (see Estimating Perceivers’ 
Parameter Values in the Supplemental Material; Lynn et al., 
2012).

The application of utility to SDT is not new—it was 
part of the theory’s initial development in psychophysics 
(Green & Swets, 1966; Tanner & Swets, 1954). Nonetheless, 
a “utilized” SDT—which incorporates the notion that per-
ceivers attempt to maximize net benefit while operating 
under perceptual uncertainty2—generates a number of 

unexpected but important theoretical observations that 
have yet to be widely explored in the psychological lit-
erature. One surprising observation is that there are con-
texts in which maximizing accuracy conflicts with 
maximizing utility, so that there are common situations 
in which accuracy should be sacrificed to achieve effec-
tive decision making. This conflict has implications for 
the use of accuracy as a measure of performance. A sec-
ond surprising observation is that there is a functional 
relationship between bias and sensitivity: Within a per-
ceiver, the optimal criterion location is not independent 
of sensitivity. Probably the most widely appreciated 
insight of SDT is its separation of sensitivity and bias as 
factors explaining behavior (Swets, Tanner, & Birdsall, 
1961), and many users believe that these two parameters 
are orthogonal, or independent of one another. This rela-
tionship between sensitivity and bias has implications for 
interpreting differences in sensitivity and bias among 
perceivers or different contexts.

Measuring Behavior: Optimal Is Better 
Than Accurate

One clear tenet of SDT is that estimates of accuracy (i.e., 
the proportion of trials garnering correct response) 
should be abandoned in favor of estimates of bias and 
sensitivity as measures of performance when feasible 
(Macmillan & Creelman, 1991). There are two reasons to 
avoid accuracy. First, accuracy does not account for two 
aspects of decision making under uncertainty and risk 
that are important for a full understanding of the per-
ceiver’s behavior: Accuracy confounds the effects of sen-
sitivity and bias on performance, and this is true whether 
one applies a utility framework to SDT or not. Second, 
the inadequacy of accuracy is compounded under eco-
nomic risk, when payoffs should optimally bias behavior, 
because accuracy is the simple tally of correct and incor-
rect decisions without regard to their actual benefits and 
costs.

Accuracy confounds sensitivity and 
bias

Accuracy is not a good indicator of what people are 
doing; it does not describe their behavior. This is because 
accuracy is blind to the separate contributions of sensitiv-
ity and bias to decision making. Although this fact is well 
known, it is less appreciated that multiple combinations 
of sensitivity and bias values produce the same accuracy 
(Fig. 2). The overt behaviors that yield a given accuracy 
level may encompass dramatic extremes of liberal and 
conservative bias. Consequently, the researcher analyzing 
accuracy rather than optimality will pool participants 

 by Lisa Feldman Barrett on August 19, 2014pss.sagepub.comDownloaded from 

http://pss.sagepub.com/


“Utilizing” Signal Detection Theory	 5

who are potentially behaving quite differently from one 
another (Lynn, Hoge, Fischer, Barrett, & Simon, 2014).

Accuracy is blind to payoffs but not 
base rate

When benefits and costs differ, accuracy is not a good 
indicator of how well people are doing; it is an inade-
quate measure of their performance. Accuracy is blind to 
the influences of benefits and costs on decision making 

(Egan, 1975; Maddox & Bohil, 2005) because it is deter-
mined without regard to the value the perceiver accrues 
for those decisions. This means that maximizing accuracy 
and maximizing utility can be at odds with one another 
in environments in which bias is due to payoffs. However, 
because accuracy is derived from the proportions of cor-
rect and incorrect responses, it is congruent with utility in 
environments in which bias is due to the base rate.

A comparison of simulated environments with differ-
ent sources of bias exemplifies these points (Table 1). 
When payoffs alone bias behavior (the payoff environ-
ment, in which false alarms are relatively costly but the 
base rate is balanced at .5), accuracy is highest when bias 
equals 0 (neutral bias). Nevertheless, utility is maximized 
when bias equals 0.4 (i.e., a somewhat conservative 
bias). Utility at the criterion that maximizes accuracy is 
7.1 points, less than the maximum utility possible, 7.5 
points. Accuracy at the criterion that maximizes utility is 
.82, less than the maximum accuracy possible, .84. 
Perceivers with bias of 0 will achieve lower maximum 
utility over a series of decisions than will those with bias 
of 0.4, despite exhibiting higher accuracy. When the base 
rate alone biases behavior (the base-rate environment, in 
which benefits and costs cancel each other out but the 
base rate is .3), the amount of bias that maximizes accu-
racy also maximizes utility (again at bias = 0.4). For com-
parison, Table 1 also contains results for neutral and 
base-rate-and-payoff environments. When benefits and 
costs differ, then, optimally biased decision making will 
yield lower accuracy than unbiased decision making, 
despite its greater utility. Consequently, accuracy cannot 
properly describe performance in environments in which 
there is risk due to payoffs.
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Fig. 2.  Illustration showing that multiple combinations of sensitivity 
and response bias produce the same accuracy. For example, the iso-
accuracy gradients in this simulated neutral-bias environment show that 
at moderate sensitivity (d′ = 2), both liberal bias (c = −0.5) and conser-
vative bias (c = 0.5) can produce accuracy near .8. Parameter values for 
this model are provided in the Supplemental Material.

Table 1.  Expected Accuracy, Criterion Locations, Bias, and Utility in Four Simulated Decision Environments

Measure

Type of decision environment

Neutral Base rate Base rate and payoff Payoff

Maximum accuracy .84 .86 .86 .84
Criterion location that maximizes accuracy 50.0 50.4 50.4 50.0
Bias that maximizes accuracy 0.0 0.4 0.4 0.0
Utility at the criterion location that maximizes accuracy 6.8 7.2 7.7 7.1
Maximum utility 6.8 7.2 8.0 7.5
Criterion location that maximizes utility 50.0 50.4 50.8 50.4
Bias that maximizes utility 0.0 0.4 0.8 0.4
Accuracy at the criterion location that maximizes utility .84 .86 .85 .82

Note: Values for expected accuracy, criterion location (percentage of range), bias (c), and utility (points accrued) were derived by applying each 
environment’s parameters to the utility function in signal detection theory. The parameter values for the neutral environment are as follows: 
correct detections and correct rejections = 10 points; missed detections and false alarms = −10 points; base rate = .5; and means of target and 
foil signal distributions = 60% and 40% of the perceptual domain’s range, respectively, with standard deviation = 10% for both distributions. The 
base-rate environment is identical to the neutral environment except that the base rate is reduced to .3. The payoff environment is identical to the 
neutral environment except that false alarms are more costly (−15 points) and missed detections less costly (−1 point). The base-rate-and-payoff 
environment combines the base rate and payoffs from the base-rate and payoff environments, respectively; the similarity parameter values are the 
same as in the neutral environment.
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Behavioral data also indicate that accuracy sometimes 
reflects the optimality of decision making and sometimes 
does not, depending on the environment. For example, in 
one study, participants who were engaged in an emotion-
perception experiment of the sort described in Figure 1a 
attempted to maximize points earned over 178 trials (see 
Lynn et al., 2012, for methodological details). Additional 
analyses (not reported in Lynn et al.) showed that accu-
racy did not reflect the optimality of decision making 
when bias was caused by payoffs (as illustrated in Table 
1). For participants in a condition that implemented a lib-
eral environmental bias via relatively costly missed detec-
tions (all else being equal), more liberal response bias 
was associated with lower accuracy, ρ =  .50 (all ρs are 
one-tailed partial correlations controlling for sensitivity, 
d′), p < .001, n = 67. Additionally, more liberal response 
bias was associated with more points earned, ρ = −.82, 
p < .001, whereas higher accuracy was marginally associ-
ated with fewer points earned, ρ = −.17, p > .086.

In contrast, accuracy did reflect the optimality of deci-
sion making when bias was caused by the base rate of 
targets (as illustrated in Table 1). For participants in a 
condition that implemented a conservative environmen-
tal bias via a relatively low base rate (i.e., targets were 
less common than foils), more conservative response 
bias was associated with higher accuracy, ρ = .91, p < 
.001, n = 75. Additionally, more conservative response 
bias and higher accuracy were associated with more 
points earned—bias: ρ = .50, p < .001; accuracy: ρ = .58, 
p < .001.

Humans appear to more easily adapt their response 
bias to the base rate than to payoffs (Bohil & Maddox, 
2001). This discrepancy leads to an observed response 
bias that maximizes accuracy at the expense of optimality 
(Maddox & Bohil, 2005). When payoffs matter, perceivers 
maximizing accuracy over optimality will accrue less 
benefit than could otherwise be the case. By ignoring the 
differences between benefits and costs, such perceivers 
are unable to tune their bias to balance those differences. 
Moreover, when the payoff matrix and base rate demand 
bias in opposing directions (i.e., liberal- vs. conservative-
going bias), perceivers who neglect payoffs could exhibit 
bias in the wrong direction relative to what is optimal for 
the environment.

Many studies are blind to the difference between opti-
mality and accuracy as a consequence of not assigning 
separate payoff values to correct detections and correct 
rejections, or to false alarms and missed detections. 
Emphasizing accuracy instead of optimality corresponds 
to a misalignment of behavior with the contingencies of 
the decision because those contingencies are ignored. In 
social-threat perception, for example, emphasizing accu-
racy over a series of judgments could correspond to con-
sidering the costs of false alarms and missed detections to 

be of equal value, and the benefits of correct detections 
and correct rejections to be of equal value. It may be 
appropriate for participants to assume balanced payoffs in 
most laboratory experiments of emotion perception, but 
the use of balanced payoffs reduces the experiments’ eco-
logical validity because it seems unlikely for payoffs to be 
balanced outside the laboratory. Outside the laboratory, 
decisions involve benefits and costs, and maximizing net 
benefit, not accuracy, is what matters. Testing perceivers 
under conditions that demand a nonneutral bias and mea-
suring performance as accumulated payoff, or optimality 
of bias, rather than accuracy, better reflects decisions 
made outside the laboratory.

Interaction of Uncertainty and Risk: 
The Relationship Between Sensitivity 
and Bias

Perceivers maximizing utility experience a functional 
relationship between bias and sensitivity predicted by the 
SDT utility function. This relationship dictates that, given 
some nonneutral response bias required by the environ-
ment (determined by base rate, payoffs, or both), to max-
imize their utility, perceivers with low sensitivity should 
be more biased than perceivers with high sensitivity.

To get an intuitive feel for this relationship, consider 
walking through an obstacle-strewn room as a signal 
detection issue (this example is further developed in the 
Supplemental Material). Why do people navigate space 
more cautiously in conditions of poor visibility than in 
conditions of good visibility? A missed detection (say, 
stepping barefoot on an object) is costly (it is painful to 
the perceiver and may break the object). When the room 
is well lit, a person can walk quickly through the room. 
When the room is dimly lit, the person walks more cau-
tiously, reducing the frequency of missed detections that 
would otherwise occur. This increased caution corre-
sponds to a change in bias. What about the environment 
has changed to cause this change in bias? The benefits 
and costs of correct and incorrect judgments about the 
presence or absence of obstacles in the person’s path 
have not changed, nor has the base rate of encountering 
obstacles. Only the perceptual similarity between targets 
and foils has changed: Obstacles and clear space look 
more similar in the dark, which reduces the person’s sen-
sitivity to discriminate obstacles against the background. 
In this example, a decrease in sensitivity leads to a more 
liberal bias, which produces a change in response: 
Decreased walking speed results in fewer missed detec-
tions and more false alarms.

In short, decreased sensitivity makes errors more 
likely. Perceivers can mitigate this increased risk to some 
extent by adopting a more extreme bias. The conse-
quence of this functional relationship is that more 
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extreme behavior is associated with greater uncertainty 
(see Fig. 3 and also Receiver Operating Characteristics in 
the Supplemental Material).

The line of optimal response

A line of optimal response (LOR; Fig. 4; Lynn et al., 2012) 
depicts the functional relationship between bias and sen-
sitivity. Any unique set of environmental base-rate and 
payoff values has a unique LOR. The LOR can be derived 
from the equation relating the likelihood ratio of the sig-
nal distributions at a given criterion (a measure of bias 
called beta, β; see Précis of Signal Detection Theory in 
the Supplemental Material) to the criterion or center mea-
sure of bias, c, and sensitivity, measured as d′ (Macmillan 
& Creelman, 1991, Equation 2.10):

	 β ′= ( )e cd 	 (1)

Providing the environment’s optimal beta value and 
solving for c (i.e., log(β)/d′) over a range of d′ values 
yields the LOR. The environment’s optimal beta value can 

be calculated from the base rate and payoffs (Tanner & 
Swets, 1954, Equation 2; see also Wiley, 1994):

	 β α αoptimal = −( ) ( ) × −( ) −( )1 / / ,j a h m 	 (2)

where α is the base rate and j, a, h, and m are the payoffs 
for correct rejections, false alarms, correct detections, and 
missed detections, respectively (see The Signal Utility 
Estimator in the Supplemental Material).

The value of βoptimal is constant for all sensitivity val-
ues; it is set by the environmental payoffs and base rate, 
and is not a function of sensitivity. By Equation 1, which 
defines beta in terms of c and d′, c must change with 
sensitivity if beta is constant. Although there is a literature 
examining beta (e.g., Snodgrass & Corwin, 1988; Wood, 
1976), we have chosen to focus on how c changes with 
sensitivity (Stretch & Wixted, 1998). Focusing on the 
lability of c, rather than the stability of beta, emphasizes 
how perceivers’ behavior—which stimuli they categorize 
as targets and which as foils—should differ between 
environments that differ in target-foil similarity or among 
individuals who differ in sensitivity (e.g., in the high- and 
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Fig. 3.  Optimizing performance in a biased environment. As illustrated by these two models 
for environments with low and high similarity of targets and foils, to offset the decrement in 
performance (lower utility) caused by high similarity (low sensitivity), perceivers should adopt a 
more extreme bias (depicted by the rightward shift of the criterion for the high-similarity utility 
function). In these models, the maximum sensitivity (d′) is 2.0 for the low-similarity environment 
and 1.1 for the high-similarity environment. Given these levels of sensitivity, the amount of bias 
(c) that will optimize a perceiver’s decisions is 0.7 for the low-similarity environment and 1.2 for 
the high-similarity environment. Note that bias as measured by the ratio of target to foil likelihood 
at the criterion (β) is 4.0 in both models and does not explicitly reflect the difference in behavior. 
Parameter values for these models are provided in the Supplemental Material.
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low-similarity environments of Fig. 3, β does not change, 
but c does).

We interpret the distance from the point defined by a 
perceiver’s observed sensitivity and bias (d′, c) to the 
LOR as a measure of how well the perceiver is able to 
adjust his or her bias to optimally accommodate his or 
her level of sensitivity. We have elected to measure dis-
tance to the LOR as euclidean distance rather than verti-
cal distance, as a means of accounting for the unknown 
bivariate error distribution in the estimates of sensitivity 
and bias (Lynn et al., 2012).

Sensitivity as a source of bias

Surprisingly, this functional relationship means that low 
sensitivity can prompt extreme bias, just as the payoff 
and base-rate parameters can. As a consequence, bias 
can change solely from a difference in the perceived 
similarity of targets and foils, without any changes in the 
parameters commonly understood to drive bias (i.e., 
base rate and payoffs).3 In studies that have found 
response bias (c) to be inversely associated with percep-
tual sensitivity (d′), the associations have sometimes 
been explained as methodological or measurement arti-
fact (e.g., See, Warm, Dember, & Howe, 1997; Snodgrass 
& Corwin, 1988). However, when sensitivity and bias 
magnitude (measured as either c or the criterion’s loca-
tion in the perceptual domain) vary inversely between 

conditions, low sensitivity should be considered as a 
possible explanation for extreme bias.

Recognizing a functional relationship between sensi-
tivity and bias is critical because it has the potential to 
reverse researchers’ conclusions about differences in bias 
that are observed whenever signal detection issues occur 
(i.e., decisions involving category uncertainty and costly 
miscategorization). For example, under the assumption 
that bias is functionally independent of sensitivity, per-
ceivers exhibiting poor sensitivity combined with extreme 
bias (relative to a control group) would be considered to 
exhibit two separate impairments in decision making: 
poor sensitivity and extreme bias. For decision making to 
be optimal, however, bias magnitude should vary 
inversely with sensitivity, particularly at low sensitivity. 
According to the utility-based account, therefore, more 
extreme bias may reflect not an impairment but a normal 
adaptive mechanism that offsets the single impairment, 
poor sensitivity. Conversely, under the independence 
assumption, perceivers exhibiting poor sensitivity with 
no difference in bias (relative to more sensitive individu-
als) would be considered to exhibit a single impairment, 
in sensitivity. In fact, such individuals may have a dual 
impairment: poor sensitivity coupled with failure to cali-
brate their bias to their poor sensitivity.

In the study by Lynn et al. (2012), perceivers exhibited 
wide variation in their ability to optimally adjust their 
bias to their sensitivity, but an inverse relationship 
between bias magnitude and sensitivity did function to 
maximize utility (Fig. 5; results not reported in Lynn 
et al.). As predicted by the utility approach to SDT, per-
ceivers with poor sensitivity (d′) exhibited more extreme 
bias (c) than did perceivers with better sensitivity, both in 
an environment using payoffs to induce a liberal bias, r = 
.26, p < .023, n = 67, and in an environment using the 
base rate to induce a conservative bias, r = −.48, p < .001, 
n = 75. Furthermore, as predicted, perceivers with more 
optimal bias (shorter distance from the LOR) earned 
more points over the series of trials (liberal payoff envi-
ronment: ρ = −.81, p < .001; conservative base-rate envi-
ronment: ρ = −.50, p < .001). Thus, perceivers who 
adopted a more extreme bias that reflected their reduced 
sensitivity made more optimal perceptual decisions.

Conclusions

SDT is a well-established analytic tool for describing 
decision-making performance in a wide variety of 
domains, ranging from the perceptual to the conceptual. 
A utilized SDT goes farther—it provides a theoretical 
framework to predict or explain behavior. The SDT utility 
function (Swets et al., 1961) makes SDT a predictive tool 
by modeling the perceptual uncertainty and behavioral 
risk that are inherent to many decisions both inside and 
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Fig. 4.  Illustration of the relationship between bias and sensitivity 
according to the utility approach to signal detection theory. Mathe-
matical modeling shows that for the utility of perceptual decisions to 
be maximized, a perceiver’s sensitivity and response-bias magnitude 
should be inversely related. A line of optimal response (LOR; dashed 
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zero slope of the LOR indicates that the decrease in utility that results 
from reduced sensitivity can be mitigated by increased magnitude of 
bias (here, a more conservative-going bias). Parameter values for this 
model are provided in the Supplemental Material.
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outside the laboratory. The model can be used to gener-
ate novel experimental questions about computational 
processes underlying bias and sensitivity and functional 
decision making (e.g., see Affective Calibration in Mental 
Illness in the Supplemental Material).

Understanding decision making and criterion place-
ment as dependent on perceivers’ subjective estimates of 
parameters that characterize the environment has excit-
ing ramifications. First, designing experiments to manipu-
late the payoff, base-rate, and similarity parameters, and 
measuring the optimality of decision making, will pro-
vide a more mechanistic approach to understanding the 
factors that underlie perceivers’ bias and sensitivity. 
Examining how perceivers make decisions in biased con-
ditions will yield better understanding of decision mak-
ing because biased environments are more realistic than 
those that are typically implemented in cognitive and 
perceptual experiments, in which payoffs are unspecified 
and the base rate is balanced across alternatives.

Second, adopting SDT as a theoretical model of deci-
sion making offers a path by which behavioral-eco-
nomic and neuroeconomic studies of judgment and 

decision making can investigate the influence of uncer-
tainty. Examining perceivers operating under uncer-
tainty would reflect decision making in more realistic 
environments than are typically employed in judgment 
and decision-making tasks that manipulate economic 
risk—variation in payoffs—but ignore signal-borne 
risk—variation in what options look like.

Sensitivity to the three signal parameters is taxonomi-
cally widespread, exhibited by vertebrates and arthro-
pods (e.g., Lynn, 2010). Model-driven approaches 
(Glimcher & Rustichini, 2004; Gold & Shadlen, 2007; 
Redish, 2004; Redish, Jensen, & Johnson, 2008) in which 
these three parameters are systematically manipulated 
may thus permit a broadly comparative investigation of 
how decision making is accomplished across levels of 
biological organization and complexity.
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Notes

1. These definitions of uncertainty and risk differ somewhat 
from those used in the literature on economic decision mak-
ing, where commonly risk is defined as knowable variation in 
the value (payoff) of a decision’s outcome and uncertainty as 
unknowable variation in that value (e.g., see the review by Volz 
& Gigerenzer, 2012).
2. It is perceptual uncertainty, modeled by the similarity param-
eter, that distinguishes SDT from other models of decision mak-
ing. Other models of decision making attempt to account for 
how decisions are influenced by variability in benefits and costs 
accrued from correct or incorrect decisions, by variability in the 
probability of alternative choices or events, and by variability in 
factors internal to the decision maker that affect risk sensitivity, 
singly or in combination (e.g., see reviews in Krebs & Kacelnik, 
1991; McNamara, Houston, & Collins, 2001). Game-theoretic 
approaches to decision making additionally account for the 
effect of other individuals’ responses on the decision maker’s 
own behavior (e.g., Grafen, 1991). Yet these models ignore 
that a perceiver’s expectations of the payoff to be accrued, the 
probabilities of alternative choices, the responses of others, and 
even the perceiver’s own body state (e.g., homeostatic and met-
abolic response) are based on signals emitted by the resources, 
game partners, body, and so forth. SDT posits that these signals 
themselves have variation.
3. Sensitivity and bias independently characterize decision mak-
ing: A perceiver’s ability to distinguish targets from foils is con-
ceptually separate from his or her estimate of the payoffs and 
base rate. Additionally, the measures d′ and c are estimated 
with statistical independence from one another (Dusoir, 1975; 
Macmillan & Creelman, 1990; See, Warm, Dember, & Howe, 
1997; Snodgrass & Corwin, 1988). Nonetheless, these notions 

of conceptual and statistical independence have inadvertently 
influenced assumptions about functional independence, such 
that there exists a misconception that a perceiver’s observed 
bias should be independent of his or her observed sensitivity. 
The utility approach to SDT shows instead that a perceiver’s 
observed bias and sensitivity are functionally related by the 
goal of maximizing utility.
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