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A growing body of work suggests that sensory processes may also contribute
to affective experience. In this study, we performed a meta-analysis of affective
experiences driven through visual, auditory, olfactory, gustatory, and somatosensory
stimulus modalities including study contrasts that compared affective stimuli to matched
neutral control stimuli. We found, first, that limbic and paralimbic regions, including the
amygdala, anterior insula, pre-supplementary motor area, and portions of orbitofrontal
cortex were consistently engaged across two or more modalities. Second, early
sensory input regions in occipital, temporal, piriform, mid-insular, and primary sensory
cortex were frequently engaged during affective experiences driven by visual, auditory,
olfactory, gustatory, and somatosensory inputs. A classification analysis demonstrated
that the pattern of neural activity across a contrast map diagnosed the stimulus modality
driving the affective experience. These findings suggest that affective experiences are
constructed from activity that is distributed across limbic and paralimbic brain regions
and also activity in sensory cortical regions.

Keywords: emotion, fMRI, meta-analysis, perception, affect

INTRODUCTION

A central endeavor in affective neuroscience is to understand how affective experiences are
constructed by the brain. Toward this goal, a great deal of research has examined the psychological
and neural basis of dimensions of affective experience, such as pleasantness and unpleasantness,
with varying degrees of potency or arousal (Wundt, 1913; Osgood et al., 1957; Russell, 1991; Bradley
and Lang, 1994; Larsen et al., 2001; Loewenstein and Lerner, 2003; Fiske et al., 2007; Rolls and
Grabenhorst, 2008; Barrett and Bliss-Moreau, 2009; Kahneman, 2011; Baucom et al., 2012; Satpute
et al., 2012, 2015; Chikazoe et al., 2014; Wilson-Mendenhall et al., 2014; Lindquist et al., 2015).
While much has been learned about these shared dimensions of affective experiences, less is known
as to what other qualities also contribute to particular affective experiences but may not be critical
for each and every one of them. For example, self-reported affect from tasting different foods may,
on an abstract level, scale with self-reported affect from seeing different sights. But the nature of
the experience also carries particular tastes and sights that may also be of importance to its affective
quality.
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Many psychological theories are agnostic about the role
that sensory inputs play during an affective experience, aside
from serving as a trigger for a change in valence or arousal
(e.g., Schachter and Singer, 1962; Zajonc, 1980; Ekman, 1999;
Scherer, 1999). Such theories provide little motivation to compare
affective experience across various modalities, emphasizing
primarily what is shared across them. The special importance
placed upon core affective dimensions also coincides with the
skewed body of neuroimaging work in affective neuroscience.
Approximately 70% of studies use visually driven affect
inductions; the second most common is auditory inductions at
∼8% (Satpute et al., 2015). A handful of neuroscience studies
have examined affect responses driven through various stimulus
modalities. But these studies, too, have focused primarily on brain
regions that correlate with core affective dimensions, such as
pleasantness, despite differences in modality.

Alternatively, research in affective neuroscience has found
that affective experience is constructed from multiple processes
(Satpute et al., 2012), and have also highlighted the importance of
both interoceptive and also exteroceptive sensory brain circuits
for affect and emotion (e.g., Craig, 2002; Barrett, 2006; Barrett
and Bar, 2009; Damasio and Carvalho, 2013). These models
are supported by neuroimaging studies, particularly using visual
stimuli, which have observed greater activity in early visual
sensory brain regions during affect-inducing stimuli relative to
neutral control stimuli involving similar sensory information
(e.g., pictures of affective faces vs. neutral faces, Lang et al.,
1998; also conditioned vs. unconditioned stimuli, e.g., Armony
and Dolan, 2002; Vuilleumier, 2005; Duncan and Barrett, 2007;
Pessoa, 2008; Sabatinelli et al., 2011). Other work in behavioral
neuroscience has found that neurons in early sensory cortex
carry lasting changes in their response properties to affectively
relevant stimuli (Weinberger and Diamond, 1987; Quirk et al.,
1997; Maren, 2001). Such findings are often interpreted from
as enhanced attention or perceptual acuity (e.g., Vuilleumier,
2005), but also as affectively related sensory vividness (Barrett
and Bar, 2009; Markovic et al., 2014). Indeed, recent studies have
suggested that plasticity even in V1 may relate to reinforcement
learning signals (Stãnişor et al., 2013; Zold and Shuler, 2015).
These findings suggest that early sensory brain regions may
also contribute to affective experiences likely on the basis of
which sensory modality is of relevance during an affective
episode.

Whether a similar pattern of findings extends beyond
the visual modality is less clear. Despite the abundance of
neuroimaging studies in affective neuroscience, now summarized
into meta-analyses, some meta-analytic studies only looked at
visual contrasts (Sabatinelli et al., 2011), whereas others collapsed
across stimulus modality (e.g., Wager et al., 2003; Duerden et al.,
2013; Lindquist et al., 2015) leaving the findings biased toward
visual affect inductions. A couple previous meta-analyses have
examined some aspects of modality during affective experience,
one focusing on pleasantness (Brown et al., 2011) and the other
on aversion (Hayes and Northoff, 2011). The findings across
these two studies are consistent with our recent meta-analysis
on valence, which showed that most limbic and paralimbic brain
regions are not selective for valence (although some regions may

show a non-selective, relative preference for negative valence, e.g.,
the amygdala, see Hayes and Northoff, 2011; Lindquist et al.,
2015). But it remains unclear from those studies as to whether
activity related to processing affective stimuli in early sensory
brain regions is reliable. Activity in early sensory modalities was
observed inconsistently in one study (Brown et al., 2011) and was
absent in the other (Hayes and Northoff, 2011), which may be in
part due to the few study contrasts involving non-visual stimulus
modalities.

To examine these issues further, we performed a meta-analytic
review of the neuroimaging literature involving studies that
triggered affective responses through one or another sensory
modality. We included at least twice as many non-visual stimulus
modality contrast maps than used in prior studies, given
the accumulation of literature, which enabled us to examine
affect inductions across both exteroceptive and interoceptive
sensory modalities (i.e., visual, auditory, olfactory, gustatory, and
somatosensory). Using a carefully coded meta-analytic database
(Kober et al., 2008; Lindquist et al., 2012, 2015), we pooled across
individual modality-specific affect-induction studies and selected
neuroimaging comparisons from studies that compared affective
stimuli with neutral stimuli within modality (e.g., presenting
affectively potent odorants vs. less potent odorants; aversive
images vs. neutral images; etc.).

Brain regions that support core dimensions of affect are
likely to have direct or indirect neuronal input from multiple
sensory modalities, and to respond to affective stimuli across
sensory modalities. Such regions likely include the amygdala,
anterior insula, anterior cingulate cortex, and orbitofrontal
cortex. These regions are anatomically connected with both
exteroceptive sensory cortical areas and visceromotor regulation
systems (Mesulam and Mufson, 1982; Mufson and Mesulam,
1982; Damasio, 1996; LeDoux, 2000; Öngür and Price, 2000;
Rolls, 2000; Amaral et al., 2003; Zald, 2003). These regions
also evince greater responses to affective stimuli in general
(Barrett and Bliss-Moreau, 2009; Brown et al., 2011; Hayes et al.,
2014; Lindquist et al., 2015). Cell recording studies have also
shown that many amygdala neurons respond heteromodally,
during both appetitive and aversive conditioning (Shabel and
Janak, 2009). For neuroimaging studies, the amygdala is often
considered to respond during affective experiences across diverse
input modalities (e.g., Francis et al., 1999; Hayes et al., 2014;
Lindquist et al., 2015). However, other studies have shown that
it responds preferentially to one or another modality (although
precisely which modality is inconsistent across studies, e.g.,
Royet et al., 2000; Wicker et al., 2003; Hayes and Northoff,
2011). We thus examined whether heteromodal limbic and
paralimbic brain regions were also engaged by affective stimuli
for each modality individually (also see Brown et al., 2011).
To do so, we computed meta-analytic maps for each sensory
modality separately and examined their conjunction (Nichols
et al., 2005).

Next we examined meta-analytic maps to see whether
information about the sensory context of an affective experience
was routinely and reliably encoded by the brain. We first
examined meta-analytic maps to see whether activity in early
visual cortex was greater during affective visual stimuli, activity
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in early auditory cortex was greater during affective auditory
stimuli, etc. More stringently, we then examined whether these
areas responded more frequently to affective stimuli in one
sensory modality than to the other sensory modalities by using
a “max criterion” approach (Beauchamp, 2005). These meta-
analytic maps provide an estimate of reliability by taking an
overall summary across individual studies. To examine whether
activity in sensory brain regions was reliable on the individual
study level, we used a multivariate analysis to test whether
individual study patterns could be classified on the basis of their
sensory context. We used a recently developed, Bayesian Spatial
Point Process model (BSPP, Kang et al., 2011). The BSPP differs
substantially from meta-analytic summary maps, such as the
multikernel density analysis (MKDA) or activation likelihood
estimates (ALE, for a discussion, seeWager et al., 2015). The latter
implement a non-generative, univariate model that combines
activations across all studies into a single statistical summary
map. In comparison, the BSPP is a generative, multivariate
model. As a generative model, it provides predictions for the
number of location of activation points for studies using, for
example, olfactory-driven affect inductions. And it provides
information about how reliable these activations are on the
individual study level. That is, we examined whether the peak
activation patterns observed in individual studies are reliable
enough to indicate the sensory context of the evoked affective
experience.

MATERIALS AND METHODS

Study Database
We updated an existing manually coded database of
neuroimaging studies of emotion. The prior database (Phan et al.,
2002; Kober et al., 2008; Wager et al., 2008; Lindquist et al., 2012)
included 233 studies extending from 1993 to 2007, to which we
added an additional 164 studies extending from 2008 to 2011 for
a total of 397 studies, 914 contrasts, and 6827 participants. Our
emotion database initially included non-painful affect inducing
stimuli delivered through touch (e.g., pleasant touch), but
excluded contrasts involving cutaneous pain. Hence we further
appended this database with studies involving painful touch
vs. neutral touch (11 studies, 12 contrasts, 293 participants).
Study contrasts from neuroimaging experiments examining
affect and emotion were included if they recruited adult healthy
participants (no clinical samples or samples involving children
were included), measured blood flow using neuroimaging with
fMRI or PET technologies, and reported activations using
standardized Talairach space (Talairach and Tournoux, 1988) or
Montreal Neurological Institute and International Consortium
for Brain Mapping (Mazziotta et al., 2001) space templates (for
additional details, see Kober et al., 2008). Our database did not
include study contrasts that assessed learning or memory (e.g.,
‘fear conditioning’), or the anticipation of a stimulus rather than
its delivery (e.g., ‘anticipation of pain’), or motivational states for
which the affective states were unclear (e.g., ‘hunger,’ ‘thirst,’ etc.).

From the combined database, we selected study contrasts
that were relevant to our hypotheses (Table 1). It would be

TABLE 1 | Number of contrasts by modality and stimulus category in
meta-analysis.

Modality Description of Contrasts Included
(versus neutral stimuli of the
same modality)

Contrasts Points

Visual Faces Facial Expressions1 137 1246

Visual Pictures Natural Scene Images 96 999

Auditory Music, Vocal Expressions, or
Sounds2

28 217

Olfactory Odors 11 63

Gustatory Foods or Liquids 14 158

Somatosensory Pleasant or Painful Touch 16 294

1For the visual modality, maps were calculated for facial expression and picture
stimuli separately. This is because the comparison of affective faces to neutral faces
is likely to be better matched for visual information than for affective images and
hence provides a more conservative test of our hypothesis. Regardless, the neural
regions engaged by affect inducing pictures of scenes were largely overlapping
with those found for facial expressions, particularly in heteromodal limbic brain
regions (see Figure 1). 2For auditory stimuli, contrasts were included if they
included involved affective music, vocal expressions (e.g., prosody), or sounds
(e.g., laughter); contrasts in which affect was induced by the semantic content
of words were excluded.

trivial to show that affective stimuli engage early sensory
brain regions relative to fixation. We therefore only included
coordinates from studies that used a neutral baseline involving
a similar category of stimulus (e.g., affective facial expressions
versus neutral facial expressions; affective sounds versus
neutral sounds; affective somatosensory stimulation vs. neutral
stimulation; etc.), or baselines that involved stimuli with
lower but same-valence affect (e.g., highly aversive natural
scene images vs. less aversive natural scene images). We
included contrasts involving a variety of task instructions
(i.e., passive viewing and judgment tasks; for a meta-analysis
focusing only on passive viewing, see Hayes and Northoff,
2011), but note that neutral stimuli are typically subjected
to the same task instructions as the affective stimuli. Mixed-
modality and cross-modality study contrasts were excluded.
Study contrasts were also excluded if the baseline was
fixation or rest or used a different class of stimuli (e.g., we
excluded contrasts examining emotional faces versus circular
shapes).

It is possible that region of interest (ROI) analyses in
individual studies may bias the results. For example, researchers
examining affect with visual or auditory stimuli may include
portions of occipital or temporal cortex, respectively, as ROIs.
To address this, points from each study contrast were coded
for whether they were observed in a whole brain analysis or
from an ROI analysis. A study contrast was excluded if 100%
of the points were from ROI analysis. Of the included study
contrast maps, the few ROI points within a map tended to
be placed in the amygdala, anterior hippocampus, cingulate
cortex, lateral orbitofrontal cortex, and brain stem. They were
not located in early sensory regions that were the focus of this
analysis.

For the visual modality, meta-analytic contrast maps were
calculated for facial expression stimuli versus neutral facial
expressions and for affective natural scene pictures versus
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neutral scene pictures separately. This was because there were
substantially more visual modality contrasts than contrasts
in other modalities, because a prior meta-analysis has found
differences between these two classes of visually driven affect
inductions (Sabatinelli et al., 2011), and because doing so also
allowed us to examine both a comparison of affective with neutral
faces separately, which is more similar in low-level visual features
than between affective and neutral pictures (Delplanque et al.,
2007). In that sense, affective facesmay provide a better test of our
hypothesis rather than being confounded by visual complexity.
We thus performed analyses using both types of visual contrasts,
but used the faces when comparing across stimulus modalities
for the MKDA comparisons. For the auditory modality, study
contrasts were included if they involved affective music, vocal
expressions (e.g., prosody), or sounds (e.g., laughter); study
contrasts in which affect was induced by the semantic content of
words were excluded. For the olfactory and gustatory modalities,
study contrasts were included if they involved comparing
pleasant or unpleasant odors or tastes to neutral odor or taste
baselines. For the somatosensory modality, studies were included
if they compared pleasant or unpleasant touch vs. neutral touch
conditions. A reference list of included studies is provided in
Supplementary Data Sheet S1. Additional characteristics about
the study contrast maps separated by stimulus modality is
provided in Supplementary Table S1.

Multi-level Kernel Density Analysis
The study contrast maps were submitted to a Multi-level Kernel
Density Analysis, as described in detail in previous studies (Kober
et al., 2008; Lindquist et al., 2012). First, to place coordinates in a
common space, we converted coordinates in T88 space to MNI
space using the “tal2mni” estimation procedure provided by M.
Brett (Brett et al., 2001). Then, we used the multi-kernel density
analysis (MKDA) approach developed by Kober et al. (2008) to
generate probabilistic maps of activations. This approach uses the
study contrast as the level of analysis and nests coordinates within
each study contrast. Other approaches have used the number
of coordinates as the unit of analysis. However, this approach
can be unduly influenced by study contrasts that report multiple
coordinates within the same area, thus making it appear as
though an area is frequently engaged even though the coordinates
may stem from a single study contrast. By using the study contrast
as the unit of analysis, the MKDA (and more recent versions of
ALE) avoids this concern.

Coordinates within each study contrast were convolved with a
12mm sphere. We then computed for each voxel a point estimate
of the probability of study contrasts that activated the voxel.
Study contrasts were weighted by the square root of the sample
size to help account for differences in statistical power. The
proportion of study contrasts that activated a voxel was treated as
a random effect. To determine significance, for each comparison
a Monte Carlo simulation (5,000 iterations) was performed
that preserved the number of contrasts and coordinates within
contrasts but randomly assigned the coordinate locations to gray
matter regions of the brain. The simulation was used to obtain
a cluster threshold, k, that indicated a whole-brain family-wise
error rate (FWER) statistical correction of P < 0.05 (voxel-level

p < 0.01). To examine which regions showed activation during
affect inductions across multiple modalities, we applied the
FWER threshold to each modality map individually and then
examined their intersection (as recommended by Nichols et al.,
2005).

To examine which regions showed modality-specific
engagement by affect inductions, we used a “max criterion”
approach (see Beauchamp, 2005) in which we took a given
modality (e.g., olfactory), subtracted the maximal probability of
affect induction from the other modalities on a voxel by voxel
basis [i.e., MAXxyz(visual, auditory, gustatory, somatosensory)],
further excluded any regions showing engagement of multiple
modalities from the intersection analysis. For this analysis, we
only included the visual faces MKDA since the stimulus features
are better controlled for and our findings by and large show
considerable overlap between faces and natural scene images
(and including both would lead to redundancies for visually
driven affect inductions). We thresholded the remaining map
using the initial (pre-masking, whole-brain) FWER thresholds,
which is a conservative test of our hypotheses. MKDA maps for
each modality are available by request or by download at: www.
research.pomona.edu/paclab

Classification Analysis and Generative
Maps
We further tested the reliability of individual studies by assessing
whether the sensory context could be deduced from the pattern
of activation alone. To do so, we used a BSPP model (Kang et al.,
2011), which treats neural activations for each study contrast
as a single realization of a Bayesian hierarchical independent
clustering process (Kang et al., 2011). The neural activations
across studies with different modalities were modeled as multiple
independent realizations of amulti-type point process. Activation
peaks are treated as a random variable, allowing for identifying
a locus around which points across study contrast maps cluster
together, and to estimate the variability of points around this
locus. We assigned a uniform distribution with wide range [0,60]
to the number of activation centers for each condition. The
classifier is, in turn, constructed from the posterior predictive
probability of the modality for a study contrast that was not
included in the training set.

For validation, we adopted a previous sampling technique
(Vehtari and Lampinen, 2002) to compute the level-one-out cross
validation accuracy. This is equivalent to the procedure that the
model was trained on the data from 301 contrast maps (for
the implementation across all six stimulus modality categories;
see Table 1), and tested on a held out map. Prior usage of the
BSPP (Wager et al., 2015) suggests that the dependence between
contrasts within individual studies does not have much of an
influence on the cross-validation procedure. 22,000 iterations
of the Markov chain Monte Carlo (MCMC) algorithm were
run with 2,000 burn-in. We checked the convergence of the
Markov chain by running five different chains with random initial
values and computing the potential scale reduction factors for the
profile of log-likelihood for the model (i.e., Gelman and Rubin’s
method; Gelman and Rubin, 1992). A value of 1.01 was obtained
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indicating the simulated Markov chain converged. See (Kang
et al., 2014) for additional details on implementing the BSPP
model.

The BSPP has at least three advantages compared with other
methods. First, it is an explicit spatial point process model that
better captures the spatial structure of neural activations. This
approach jointly characterizes randomness of the number and
locations of neural activations, while most other methods do
not. Second, the hierarchical spatial model is a more accurate
representation of the true data generating mechanism. And third,
the fully Bayesian model captures more sources of variation,
and appropriately conveys the certainty (or lack there of) in the
computation of the predictive probabilities that determine the
classification outcome.

RESULTS

Coordinate tables of MKDA maps for each sensory modality are
available in Supplementary Data Sheet S2.

Neural Regions Responding During
Affect Inductions across Modalities
We first calculated and thresholded MKDA maps for the
visual faces, auditory, olfactory, gustatory, and somatosensory
modalities individually, as shown in Figure 1. To see which
brain regions were engaged by multiple stimulus modalities,
we used a conjunction analysis which examined the overlap of
individually thresholded maps (Nichols et al., 2005). As shown
in Figure 2, activation occurred across two or more stimulus

FIGURE 1 | Early sensory input regions are routinely engaged during affective stimuli relative to neutral baseline stimuli. Meta-analytic multikernel
density analysis (MKDA) maps for contrasts involving affect inductions presented through visual (face stimuli), visual (natural scene images), auditory, olfactory,
gustatory, and somatosensory modalities [family-wise error rate (FWER) corrected, p < 0.05]. Despite selecting for within-study comparisons involving matched
neutral baseline stimuli of the same modality, activation is frequently observed in early sensory regions of the corresponding modality. This includes activity in striate
and extrastriate cortex during visual inductions (top two rows), posterior superior temporal cortex during auditory inductions, piriform cortex during olfactory
inductions, dorsal mid-insula during gustatory inductions, and post-central gyrus during somatosensory inductions.
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FIGURE 2 | Neural regions frequently engaged during affect inductions across multiple sensory input modalities. Illustrated in the figure are neural
regions responding during affective inductions across multiple modalities (i.e., intersection of MKDA maps, as from Figure 1). (A) Superimposes each modality: V,
visual faces; A, auditory; O, olfactory; G, gustatory; S, somatosenory. (B) Illustrates overlaps from the conjunction analysis. Overlapping portions of dorsal anterior
cingulate/pre-supplementary motor area were from visual and somatosensory inductions; the left amygdala during visual and auditory affect inductions; the right
amygdala during visual and olfactory affect inductions; the left anterior insula during visual and auditory affect inductions; the right anterior insula during visual,
auditory, and olfactory affect inductions. Visual natural scene image contrasts were excluded from the analysis for balance across modalities and because visual
faces are more likely to be better controlled for visual complexity relative to the neutral baseline. Reducing the threshold by removing the cluster extent showed that
auditory inductions also overlapped with superior portions of the dorsal anterior cingulate engaged during visual and somatosensory inductions, and with the right
amygdala, however, other findings remained as depicted in the figure. Images slices from top left running clockwise are taken at: x = –3, y = –1, x = 39, x = –35.

modalities in heteromodal portions of limbic and paralimbic
brain regions. Portions of the dorsal anterior insula/pre-
supplementary motor area (dACC/pre-SMA) was engaged
during visual and somatosensory driven affect inductions.
Auditory driven inductions showed numerically positive values
in superior portions of the dACC, and olfactory and gustatory
driven affect inductions showed numerically positive values in
ventral portions of the dACC, but at an uncorrected threshold
of p < 0.01 (not shown). The left amygdala was responsive
during visual and auditory affect inductions (Figures 1 and 2),
and the right during visual and olfactory affect inductions.
Portions of the left anterior INS were frequently engaged
during visual and auditory inductions (Figure 2); gustatory
affect inductions engaged a more posterior part of the anterior
insula. Portions of the right anterior insula extending were
responsive during visual, auditory, and olfactory inductions, and
for visual and gustatory inductions for the adjacent inferior
frontal gyrus/orbitofrontal cortex (Figures 1 and 2). Some
stimulus modalities also showed some degree of preferential
engagement of these regions. Olfactory driven affect inductions
contributed to greater activity in the right amygdala, but not
in the left hemisphere clusters regardless of the cluster-level
threshold. Gustatory and somatosensory driven affect inductions
did not reliably engage the amygdala, even upon relaxing the
cluster-level threshold.

Reliable Activity in Early Sensory Brain
Regions across Affect Inductions
Next, we examined whether sensory cortical areas were also
frequently active during affect inductions. MKDA maps during

affect stimuli presented through each sensory modality relative to
within-modality neutral control stimuli showed reliable activity
in early sensory cortical brain regions. As illustrated in Figure 1,
relative to neutral control stimuli, activity in occipital cortex
was frequently observed during visually driven affect inductions,
activity in superior temporal cortex was frequently observed
during auditory driven affect inductions, activity in piriform
area was observed during olfactory driven affect inductions, and
activity in mid-insular cortex was observed during gustatory
driven affect inductions. In general, these results indicate
that cortical regions receiving early stage inputs from sensory
modalities are also frequently active during affective inputs.

We further tested whether affect inductions presented through
a particular modality showed greater activity in associated
sensory cortical areas relative to affect inductions occurring
through other modalities. To address this, we conducted a whole-
brain analysis using a “max criterion” approach (see Beauchamp,
2005), which tests whether the probability of activation in a
cluster remains significant for stimuli presented through a given
modality even upon subtracting out the maximal probability of
activation amongst voxels in the cluster occurring during stimuli
presented through other modalities. As shown in Figure 3,
for visually driven affect, activation was found bilaterally in
the middle occipital gyri above and beyond the frequency of
activity stemming from the other modalities. For auditory driven
affect, activation was found bilaterally in the superior and
middle temporal gyri. Tests for olfactory and gustatory modalities
were limited in part because early sensory regions for olfaction
are directly adjacent to the amygdala (i.e., piriform cortex for
olfaction, Gottfried and Zald, 2005; Seubert et al., 2012) or the
anterior insula (i.e., mid-insular cortex for gustation, Small et al.,

Frontiers in Psychology | www.frontiersin.org 6 December 2015 | Volume 6 | Article 1860

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Satpute et al. Sensory Regions in Affective Experience

FIGURE 3 | Selective activation in sensory cortical regions during visually driven, auditory driven, and somatosensory driven affective experiences.
The figure illustrates brain regions showing selectively more likely activity during affect induced through visual, auditory, or somatosensory modalities using a max
criterion analysis. In lighter and darker blue (largely overlapping) are brain regions shown more frequent activation during affective inductions using visual faces
images vs. neutral images or natural scene images vs. neutral scene images, respectively, after subtracting out the maximal probability of activation of these regions
during affect inductions from other (non-visual) stimulus modalities (auditory, olfactory, gustatory, somatosensory). Yellow and brown highlight brain areas showing
the corresponding analysis but for auditory or somatosensory stimuli.

1999), and also because there were fewer contrasts in olfaction
and gustation overall (Table 1). Thus, while the meta-analytic
maps during affective responses presented through olfactory or
gustatory inputs exhibited activity extending over these early
sensory cortical regions (Figure 2), the whole-brain max criterion
analysis revealed no unique activations for these modalities. For
somatosensory driven affect, while the lateral post-central gyrus
did not retain cluster-wise significance at the a priori defined
FWE-corrected threshold (voxel wise p < 0.01), it did survive
FWE-correction using in a smaller cluster but with a more
stringent voxel thresholding (voxel wise p < 0.001). In summary,
the results indicate that sensory regions in occipital, temporal,
and lateral somatosensory cortex were more frequently active
particularly during visually, auditory, and somatosensory driven
affect inductions, respectively.

Pattern Classification Analysis for
Diagnosing the Stimulus Modality of an
Affect Response
To test whether the activation maps are individually reliable
beyond the overall summary, and relatedly, whether the pattern
of brain activation in a given study can diagnose the sensory
context of an affective experience, we submitted the individual
study contrast maps to a classification analysis. Specifically, we
used a BSPP model, which is a generative model that also
provides expectations of where activations would likely fall,
and also takes into account the joint probability of activations
in multiple regions (Kang et al., 2014; Wager et al., 2015).
All analyses were performed on contrast maps that compared
affective stimuli with neutral control stimuli matched for sensory
information (e.g., pictures of fearful facial expressions vs. neutral
facial expressions). Classification of the six stimulus categories,
including visual categories for faces and pictures separately (c.f.,
Sabatinelli et al., 2011), was 55.8% (SE = 0.029), well above
chance. Classification accuracy for each stimulus category is
shown along the diagonal in Figure 4A.

Classification accuracies were higher for some stimulus
modalities (e.g., somatosensory and visual faces) over others (e.g.,
gustatory and olfactory). Also, misclassifications were rare from

FIGURE 4 | Brain activity diagnoses the sensory context of affective
experience. Confusion matrices are shown with category predicted by the
Bayesian Spatial Point Process (BSPP) model along the rows and the actual
category along the columns. (A) For all six types of stimuli, correct
classifications were overall higher as indicated by the values along the
diagonal than misclassifications, as indicated by values in the off-diagonal
(overall classification accuracy = 55.8%, SE = 0.029). (B) Classification
accuracies for the four non-visual stimulus modalities alone (overall
classification accuracy = 63.2%, SE = 0.06).

a given modality to auditory, olfactory, or gustatory modalities,
but slightly higher to visual modalities. The BSPP model, being
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a generative rather than discriminative classifier, takes into
account the base rates of activation in each modality, and the
quality of information is influenced by the number of studies.
The imbalances likely reflect the substantially greater number
of contrasts available for visual faces and pictures (Table 1).
However, if the base rates alone were driving the results,
and information from the contrast maps would be insufficient
to diagnose the sensory source of an affective stimulus and
one would not expect to see substantially higher classification
accuracy rates along the diagonal of the matrix in Figure 4A.
To test this, we performed the same analysis using a subset of
20 randomly selected visual face contrast maps to even out the
number of contrast maps, which drastically mitigated the bias
(Supplementary Image S1). We also performed the model again
this time excluding visual contrasts given their overabundance.
Classification of the remaining four stimulus modalities was
slightly higher at 63.2% (SE = 0.06), and increased substantially
for all stimulus modalities, as shown in Figure 4B. These findings
indicate that classification accuracy was not driven solely by the
visual modality. As an additional analysis, we also examined
classification analysis comparing affective driven by visual faces
and visual natural scene images. Reliable separation was observed
at 65.7%, however, classification accuracy was largely driven by
correctly classifying faces (75% accuracy), whereas classification
of pictures was close to chance (52%). Indeed, misclassifying
of natural scene images as faces was nearly as common (48%).
Overall, findings from the BSPP models provide stronger
evidence of reliability across individual studies, and indicate that
the pattern of brain activity provides information to diagnose
the sensory context of an affective experience. Generative maps
from the BSPP model for each stimulus category are shown in
Supplementary Image S2.

DISCUSSION

In this study, we found that information about affective
experiences is carried in limbic/paralimbic brain regions and also
in exteroceptive and interoceptive cortical sensory regions. The
amygdala, anterior insula, and orbitofrontal cortex responded
during affective stimuli across two or more stimulus modalities.
Portions of the occipital, temporal, and post-central gyrus
were more frequently engaged during visual, auditory, and
somatosensory affective experiences, respectively. Activity in
piriform cortex and mid-insular cortex was also observed during
olfactory and gustatory driven affective responses, respectively,
although the fewer contrasts and proximity to heteromodal areas
makes it unclear whether these regions respond specifically to
within-modality affect inductions. Using a classifier, we also
found that the pattern of neural activity provides information
about whether the current affective experience is driven by a
sight, smell, or touch, etc. We observed an average classification
rate of 55.8% for six category classification using two types
of visual inductions. These levels are in the same range as
prior classification studies on individual participants or cross-
participants (e.g., Kassam et al., 2013; Chikazoe et al., 2014),
although interpretation of classification accuracies across studies

should be taken with caution since accuracy rates can be
sensitive to the particularities of different experimental designs
and analytical techniques (Clithero et al., 2011). Taken together,
our findings provide both univariate andmultivariate support for
notion that neural activity separates affective episodes apart along
the lines of their sensory qualities.

Involvement of Limbic and Paralimbic
Brain Regions across Stimulus
Modalities
Limbic and paralimbic regions of the brain (Papez, 1937;
Maclean, 1952; Damasio, 1996) are frequently engaged across a
large variety of affective experiences including various discrete
emotions and both positive and negative affective valence
(Barrett and Bliss-Moreau, 2009; Wilson-Mendenhall et al.,
2013a; Lindquist et al., 2015). Our findings extend the generality
of these regions by observing that they also respond across
diverse exteroceptive and also interoceptive inputs. Our meta-
analysis also uncovered other areas that were commonly active
during affective experiences triggered across various modalities,
including the anterior insula and the dorsal cingulate cortex/pre-
supplementary motor area, generally consistent with findings
in a prior study (Brown et al., 2011). Both of these regions
share reciprocal connections with the amygdala (Morecraft
et al., 2007), and they are also functionally interrelated as
found in network analyses (Corbetta and Shulman, 2002;
Seeley et al., 2007; Corbetta et al., 2008; Beckmann et al.,
2009; Taylor et al., 2009; Bickart et al., 2012; Touroutoglou
et al., 2012). The neuroanatomical connections of this network
suggests that it may function to integrate sensory information
(and contextual information from association cortex) with
somatovisceral representations of the body (Damasio, 1996;
Öngür and Price, 2000; Craig, 2002) that may underlie core affect
(Barrett and Bliss-Moreau, 2009).

Notably, not all of these limbic and paralimbic regions were
reliably engaged across the five sensory affect inductions we
examined. On the one hand, this may be due to statistical
power; there were several more studies that used visual and
auditory affect induction methods and activity associated with
these induction methods also contributed to all of the clusters
responding to more than one affect induction (Figure 1). In
contrast, there were fewer contrasts in other modalities, and
activity associated with these induction modalities was less
consistent across those clusters. But on the other hand, these
findings do coincide with other observations on olfaction,
gustation, and somatosensation. For affective olfactory inputs, we
observed more frequent activity in the right amygdala and right
anterior insula (see Figure 2B), but not in the left hemisphere
even at uncorrected thresholds. Previous studies have also
noted laterality related to processing affective olfactory inputs,
although the properties guiding hemispheric specialization for
olfaction have nonetheless been difficult to characterize (Brand
et al., 2001; Zald, 2003; Royet and Plailly, 2004; Costafreda
et al., 2008). For instance, Royet and Plailly (2004) proposed
that the left hemispheric processing of olfaction may be more
associated with valence and the right with familiarity. Our
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findings appear to be inconsistent with this perspective. However,
it is also possible that repeated trials of the same affective
odorants or neutral odorants (as occurs in most experiments),
also interacts with familiarity (i.e., that the speed of neural
habituation or sensitization is different for affective vs. neutral
odorants). Affective gustatory inputs did not reliably activate
the left or right amygdala. This finding dovetails with some
research in rodents showing that insula but not amygdala
lesions impaired conditioned taste aversion (Dunn and Everitt,
1988; Bermudez-Rattoni and McGaugh, 1991; cf., Schafe et al.,
1998, for a discussion of the role of conditioning methodology;
also see Wheeler et al., 2013). Affective somatosensory inputs
also did not reliably activate the amygdala, consistent with
a greater role for the amygdala in identifying exteroceptive
sensory sources of information that warrant further attention
(Davis and Whalen, 2001; Vuilleumier, 2005; Barrett et al.,
2007). Altogether, our findings suggest that heteromodal brain
regions exhibit greater activity for affective stimuli across at least
two or more stimulus modalities, but also that this pattern is
not uniform across all modalities. Our findings are consistent
with recent studies showing that heteromodal areas may also
contribute meaningful information about the sensory context
of an affective experience (Wager et al., 2013; Chang et al.,
2015).

Early Sensory Cortical Areas are
Frequently Engaged During
Sensory-driven Affect Inductions
Another key finding from this study is that affective stimuli
routinely engaged sensory input regions of cortex. Prior work on
how affect relates to activity in early sensory areas of cortex has
largely been focused on the visual modality (e.g., Lang et al., 1998;
Morris et al., 1998; Vuilleumier et al., 2004; Vuilleumier, 2005;
Vuilleumier and Driver, 2007). Fewer studies have examined
the other modalities (Table 1, also see Satpute et al., 2015).
As such, our results extend prior work in three ways. First,
we observed that greater affect-related activity in early sensory
cortical regions is also robust for auditory, olfactory, gustatory,
and somatosensory inputs (each vs. neutral within modality
baseline stimuli), too. Second, we observed that greater activity
in early sensory regions occurred in a modality-specific rather
than modality diffuse manner, at least for visual, auditory, and
somatosensory driven affective experiences. And third, using a
multivariate classification algorithm, we found that activity in
the brain was diagnostic of the sensory context of an affective
experience.

These results dovetail with the presence of neural
connections that extend between sensory cortical regions
with limbic/paralimbic brain regions (Mesulam and Mufson,
1982; Mufson and Mesulam, 1982; Augustine, 1996; Yukie,
2002; Amaral et al., 2003; Sah et al., 2003). Such sensory-limbic
connections are known to be important for an organism to
more readily learn and identify the particular exteroceptive
or interoceptive source of an affective sensation and facilitate
appropriate behavioral actions (Teich et al., 1989; Campeau and
Davis, 1995). Neurons in early sensory input regions exhibit

amygdala-dependent “tuning” responses toward auditory and
visual stimuli that acquire affective significance, as observed in
non-human animals (Weinberger and Diamond, 1987; Quirk
et al., 1997; Maren, 2001). Mirroring these findings in humans,
amygdala-dependent affect-related modulation in early sensory
cortex has also been observed in humans for the visual modality
(Vuilleumier, 2005). More recently, studies in non-human
animals have shown that plasticity even early visual cortex may
relate to reinforcement learning signals (Stãnişor et al., 2013;
Zold and Shuler, 2015), and thus, that increases in early sensory
cortex related to affective processing may be due to forming
affect-related associations.

Our findings are overall consistent with the view that sensory
areas play an important in affective experience beyond merely
processing the input stimulus. While our findings also suggest
a degree of modality-specificity, the basis of this specificity may
depend on the mechanisms underlying involvement of these
sensory areas. From a predictive coding standpoint for example
(Bastos et al., 2012; Barrett and Simmons, 2015), the modality
specific pattern we observed may be because we limited our
analysis to studies looking at individual stimulus modalities.
However, if an affect-inducing auditory stimulus also provides
pertinent information about visual or somatosensory properties
that are also salient for the affective experience, then greater
activity may be related to prediction error in early sensory
cortical areas external to those directly involved in processing the
stimulus. Indeed, a recent study has shown that activity in early
sensory areas may provide information pertinent to other sensory
modalities (Pooresmaeili et al., 2014), suggesting the possibility
that early sensory cortex may serve as association cortex for other
stimulus modalities (Barrett and Simmons, 2015). Indeed, while
our analysis primarily focuses on greater activation in sensory
brain regions, the distribution of activity may nonetheless carry
meaningful information across modalities (e.g., Pooresmaeili
et al., 2014).

Implications for Psychological and
Neuroscience Models of Affective
Experience
Psychological models of affect and emotion routinely include
autonomic, motor/somatosensory, and cognitive components
as being important for core affective features that are shared
across experiences and also for understanding how affective
experience vary from one another. But these models have
said little about the contributions of exteroceptive sensory
inputs during affective experience, aside from coding for an
input stimulus (Schachter and Singer, 1962; Zajonc, 1980;
Ekman, 1999; Scherer, 1999). We observed that activity in early
sensory regions exhibited affect-related modality-specificity, and
that neural activity was diagnostic of the sensory source
of affective stimulus, even upon subtraction from neutral
baseline stimuli. These results suggest that affective episodes are
differentiated in part by the sensory information that constitutes
them.

Neural models of affect offer several ways to interpret affect-
related activity in early sensory cortex. Here, we outline two
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broad approaches that explain these findings in slightly different
ways. While our results do not adjudicate between them, both
of these approaches make suppositions about how mind-brain
mappings may occur that lead to slightly different interpretations
of the relationship between affect and perception. The prevailing
approach has been to map affective experience onto only those
brain regions that are commonly engaged across the diverse
affect-eliciting situations. Models adopting this approach tend
to emphasize a relatively more modular organization with an
interactive relationship between perception and affect on the
psychological level of analysis and in parallel, an interactive
relationship between sensory and limbic systems on a neural level
of analysis (e.g., Bradley et al., 2003; Dolan andVuilleumier, 2003;
Vuilleumier, 2005; Sabatinelli et al., 2009). However, a recent
review of findings in humans and non-human animals has noted
the challenges in attributing processing in sensory areas solely
to sensory features apart from value-laden or affective features
(Hayes et al., 2014).

Another approach proposes that affective experience is
represented in a more distributed fashion that may involve
different ensembles of neurons in different situations (Duncan
and Barrett, 2007; Pessoa, 2008; Barrett and Bar, 2009; Chikazoe
et al., 2014). These models may incorporate sensory cortical
systems as contributing to affect constitutively. While a particular
sensory cortical system may not be involved in all affective
experiences, it may nonetheless play an important role in
some of them. Plasticity in sensory areas on a neural level
may contribute to affective aspects of the experience on a
psychological level (Barrett and Bar, 2009; Markovic et al., 2014).
Models adopting this approach combine well with grounded
cognition models which propose that information in the sensory
modalities help constitute cognition and emotion more broadly
(Barsalou, 2008; Wilson-Mendenhall et al., 2011, 2013b). An
implication of this approach is that if affective experience is
constructed from distributed circuits, people may arrive at the
same reported experience of affect by using different circuits.
Indeed, one recent study observed that the subjective experience
of affective arousal induced by viewing natural scene images
correlated with activity in the ventral anterior insula in women
but with activity in occipital cortex in men (Moriguchi et al.,
2014).

Limitations
An important corollary to the current findings is that there were
too few contrasts in most of the stimulus modalities to separate
analyses by valence. This limitation leaves open the possibility
that affect-related activity in early sensory cortical areas or in
heteromodal areas is specific for positive or negative valence or to
particular emotion categories. Arguing against this idea, however,
a recent neuroimaging experiment using visually driven affective
experiences found that information about valence is not present
in posterior cortical areas (also see, Baucom et al., 2012; Chikazoe
et al., 2014). Additionally, univariate meta-analyses provide little
evidence for valence-specific activity in early sensory cortical
areas or in the heterolimbic regions we observed here including
the amygdala, ventral anterior insula, and anterior cingulate
cortex/pre-SMA (Hayes et al., 2014; Lindquist et al., 2015).

Nonetheless, it is also possible that some brain regions did
not show up in our analyses because they may be responsive
only during particular combinations between modalities and
valences.

We also collapsed across emotion categories due to insufficient
data, for which a similar discussion of limitations can be made
as for affect. Neuroimaging studies examining discrete emotions
have yet to observe that specific brain regions are associated
with specific emotions (Lindquist et al., 2012). Alternatively,
what has been found in both an individual experiment on single
subjects (Kassam et al., 2013; Kragel and LaBar, 2015) and in
a meta-analysis of studies (Wager et al., 2015), is that emotion
categories could be diagnosed using multivariate patterns of
activation. The extent to which these findings are specific to a
particular experimental context (rather than generalizing across
the many situations in which these emotions may be induced),
and precisely what these patterns look like remains unclear.
For instance, the brain regions that appear to be important
for diagnosing particular emotions appears to vary considerably
across these studies and also rely heavily on neocortical brain
regions that are also known to be involved in many other
process. What is known, however, is that the patterns are not
“fingerprints” in the sense that the pattern for a given category
functions like a prototype and is not present in every (or even
in any) single instance of the category. Moreover, observing
separation using multivariate analyses but not univariate analyses
suggests first, that no individual brain region is emotion specific
per se, and second, that the relative activity across brain regions
is the important feature for the diagnosis of emotion categories.
In contrast, our observations on affect driven through various
stimulus modalities show separation using both univariate and
multivariate analyses and suggest that these effects may be
grounded in limbic-sensory connections. Still, we cannot rule
out the possibility that emotion categories may vary by stimulus
modality, and may contribute to the observations here. These
limitations may be tested in future work as studies accumulate,
but only to the extent that researchers implement a greater
variety of methodologies for inducing affect and emotion,
including sampling more heavily from non-visual stimulus
modalities.

A final consideration is that the affective stimuli typically
used for various stimulus modalities may also trigger different
semantic content (e.g., social content for faces, and non-social
content for smells, etc.). We attempted to limit this possibility by
only including study contrasts that used neutral baseline stimuli
of the same category (e.g., affective vs. neutral faces; affective vs.
neutral odorants). We also included both visual faces and visual
natural scene images as two separate visual categories, for which
univariate analyses showed considerable overlap andmultivariate
analyses showed greater misclassification between the two visual
categories than between visual and non-visual categories. The
selection of similar content baselines and overall pattern of results
are consistent with neural separation on the basis of sensory
modality than by semantic content, however, future work may
also examine whether semantic context affiliated with a given
affective experience is also routinely identifiable on the basis of
brain activity.
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CONCLUSION

Understanding affective experience requires capturing both
what is common across affective episodes relative to more
neutral episodes, but also what distinguishes various affective
episodes from one another (Barrett, 2006). From enjoying
the taste of ice cream to listening to pleasant music, the
‘pleasantness’ derived across these disparate moments involves
a psychological abstraction across elements that are unique to
each affective episode. Whether such dimensionality reduction
is also characteristic of how our brains encode affect experience,
or whether these elements combine in various ways involving
a more distributed neural architecture for affective experience,
is an emerging question of interest (Satpute et al., 2012;
Barrett and Satpute, 2013; Chikazoe et al., 2014). In this
meta-analytic study, we found that the processing of affective
sights, sounds, smells, and tastes relative to neutral stimuli is
supported by a combination of activity in heteromodal limbic
and paralimbic regions with sensory cortical brain regions,
consistent with recent constructivist neural architectures of affect
and emotion (Satpute et al., 2012; Barrett and Satpute, 2013).
Univariate analyses showed that activity in sensory cortical
areas was reliably observed across five sensory modalities, and
multivariate analyses revealed that the sensory context of affective
experiences is reliably diagnosed on the basis of activation
patterns. Thus, while affective experiences are known to involve
heteromodal limbic and paralimbic regions, our findings suggest

that sensory regions may also play an important role in affective
experience.
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