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Abstract

Emotion perception, inferring the emotional state of another person, is a frequent judgment made 

under perceptual uncertainty (e.g., a scowling facial expression can indicate anger or 

concentration) and behavioral risk (e.g., incorrect judgment can be costly to the perceiver). 

Working memory capacity (WMC), the ability to maintain controlled processing in the face of 

competing demands, is an important component of many decisions. We investigated the 

association of WMC and anger perception in a task in which “angry” and “not angry” categories 

comprised overlapping ranges of scowl intensity, and correct and incorrect responses earned and 

lost points, respectively. Participants attempted to earn as many points as they could; adopting an 

optimal response bias would maximize decision utility. Participants with higher WMC more 

optimally tuned their anger perception response bias to accommodate their perceptual sensitivity 

(their ability to discriminate the categories) than did participants with lower WMC. Other factors 

that influence response bias (i.e., the relative base rate of angry vs. not angry faces and the 

decision costs & benefits) were ruled out as contributors to the WMC-bias relationship. Our results 

suggest that WMC optimizes emotion perception by contributing to perceivers’ ability to adjust 
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their response bias to account for their level of perceptual sensitivity, likely an important 

component of adapting emotion perception to dynamic social interactions and changing 

circumstances.
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optimality

During social interactions, people make inferences about what their social partners are 

feeling, an example of emotion perception. Emotion perception judgments are seemingly 

made rapidly, automatically, and effortlessly. Judgments in one moment (e.g., that a social 

partner is angry) guide the perceiver’s behavior in the next moment (e.g., to allay the 

perceived anger). A person’s ability to perceive the feelings of others is necessary for normal 

social functioning. A deficit in emotion perception is a defining feature of almost every class 

of mental disorder and might constitute a transdisorder vulnerability to psychopathology 

(Phillips, Drevets, Rauch, & Lane, 2003). Emotion perception abilities change with 

chronological development and aging (Isaacowitz et al., 2007; Horning, Cornwell, & Davis, 

2012), and are impaired in almost all neurodegenerative disorders.

Outside the laboratory, emotion perception is frequently performed under perceptual 
uncertainty and behavioral risk. Perceptual uncertainty means that a given set of facial 

movements can mean different things in different contexts. Behavioral risk means that there 

are costs to being wrong about the meaning of facial actions. Because of uncertainty and 

risk, inferring a person’s emotional state from his or her facial expression is not simply a 

matter of accurately decoding the structural information of a facial expression. Context, 

including the decision environment and the perceiver’s internal state, is crucial to 

disambiguating alternative interpretations of a given facial expression (for a review see 

Wieser & Brosch, 2012). For example, both affectively-charged background imagery 

presented with a face and the perceiver’s own behavioral inhibition/activation tendencies can 

interact to influence how intense a facial depiction of fear needs to be before it is judged as 

fearful (Lee, Choi, & Cho, 2012).

The importance of correctly accounting for context suggests that aspects of executive 

function, such as working memory capacity (WMC), may have a role in effective emotion 

perception. Working memory capacity measures the capacity for “controlled processing” of 

items in working memory (Barrett, Tugade, & Engle, 2004). This notion of processing 

capacity is distinct from working memory size or storage capacity (e.g., how many items can 

be remembered simultaneously). Controlled processing is one’s ability to maintain goal-

oriented performance in conditions characterized by interference with, and competing 

demands on, focusing on what is relevant and suppressing extraneous, irrelevant stimuli or 

thoughts (Kane & Engle, 2002). For example, accomplishing tasks in a context that requires 

inhibition of habitual or typical responses utilizes WMC (e.g., Kane & Engle, 2003). As 

such, WMC influences performance across a variety of domains, such as reading 

comprehension (e.g., Daneman & Merikle, 1996), following directions (e.g., Engle, Carullo, 

& Collins, 1991), and effective reasoning about novel or changing problems (e.g., Conway, 

Lynn et al. Page 2

Emotion. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cowan, Bunting, Therriault, & Minkoff, 2002). Breakdown of controlled processes permits 

responses that are less relevant to current goals to emerge, causing performance decrements 

(reviewed by Barrett et al., 2004). Fatigue, drug use, and mental illness are all associated 

with state-like variation in the ability to maintain controlled processing, and produce short-

term fluctuations of otherwise trait-like variation among people (reviewed by Engle, 2010). 

Although high WMC has been associated with optimal decision making under economic 

risk (e.g., Cokely & Kelley, 2009), WMC has received little attention in emotion perception, 

a domain in which risk and perceptual uncertainty can interact.

Many of the functional characteristics typical of tasks shown to involve WMC likely apply 

to emotion perception. For example, effective emotion perception requires perceivers to 

discriminate emotion categories by their physically similar, and sometimes shared, facial 

actions. Higher WMC is associated with more effective visual target identification in the 

presence of distracting information that is physically similar to target information (Tuholski, 

Engle, & Baylis, 2001). Furthermore, maintaining effective emotion perception across 

different social contexts (e.g., talking with peers vs. superiors) may require perceivers to 

adapt their expectations about the risks of misperception, and higher WMC is associated 

with more successful adaptation of behavioral strategies to changing conditions (Schunn & 

Reder, 2001).

While WMC has not been examined as an individual difference in emotion perception, 

operating under working memory load interferes with self-regulation of emotional 

expression (Schmeichel, Volokhov, & Demaree, 2008) and interpretation of non-verbal 

social cues (Phillips, Tunstall, & Channon, 2007), including categorization of facial 

expressions in verbal labeling tasks (Phillips, Channon, Tunstall, Hedenstrom, & Lyons, 

2008) and categorization of ambiguous facial expressions (Lim, Bruce, & Aupperle, 2014). 

For example, Phillips, et al. (2008) used a verbal working memory load in a dual-task design 

with a facial emotion labeling task. They found that working memory load decreased 

accuracy of emotion perception. In addition, Lim, et al. (2014) used a spatial working 

memory load in a dual-task design with an ambiguous facial emotion categorization task. 

They found that interference with working memory by emotion-word distractors led 

perceivers to more frequently categorize the faces as “fearful,” but only for the more intense 

depictions of fear. Taken together, these findings suggest that individual differences in WMC 

may influence how effectively people discriminate and/or respond to the emotions of others: 

Working memory capacity may interact with environmental context, such as the perceptual 

similarity of one emotion category to another (Lim et al., 2014), to influence the 

functionality of emotion perception (Phillips et al., 2008).

Emotion perception research often focuses on categorization accuracy (proportion of trials 

correctly answered). In addition, studies typically employ a balanced base rate and 

undifferentiated decision payoffs. Base rate refers to the probability of occurrence of 

different emotional categories. A balanced base rate means that no one category is 

encountered more often than another (for example, when different emotion categories are 

presented with equal frequency in an emotion perception task). Payoff refers to reinforcing 

and/or punishing feedback following correct or incorrect categorization judgments, 

respectively. For undifferentiated payoffs, the magnitude of reward for correct judgments 
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does not differ from the magnitude of punishment for incorrect judgments (for example, the 

feedback statements “That was correct” and “That was incorrect” are assumed to have the 

same magnitude). However, signal detection theory (SDT; Green & Swets, 1966; Macmillan 

& Creelman, 1991) recognizes that accuracy decomposes into two factors (e.g., Lynn & 

Barrett, 2014; Lynn, Hoge, Fischer, Barrett, & Simon, 2014). One factor is perceptual 
sensitivity, a perceiver’s ability discriminate targets (e.g., faces depicting one emotion 

category, such as anger) from foils (e.g., faces depicting an alternative emotion). Perceivers 

with high sensitivity attain high accuracy because they experience less uncertainty about 

what the correct answer is, and so make fewer mistakes. The other factor is response bias, a 

perceiver’s tendency to favor answering with one category over another. With the typically-

employed balanced base rate, perceivers who do not intrinsically favor one answer over 

another, called neutral bias, attain high accuracy because they match their use of an answer 

to the probability of its being the correct answer (the base rate). It remains unaddressed 

whether WMC’s influence on emotion perception may be in part attributable to an effect on 

perceiver sensitivity, bias, or both.

Moreover, perceivers may attempt to optimize their decision making, seeking to maximize 

the payoff accrued over a series of decisions (e.g., Lynn, Zhang, & Barrett, 2012). In SDT, 

when perceivers seek to optimize decision making, three parameters influence their bias: 

base rate, payoff, and the perceivers’ own sensitivity (e.g., Lynn & Barrett, 2014). Under 

balanced base rate and undifferentiated payoffs, neutral bias is optimal: No answer is more 

likely to be correct than another, and any costs of incorrect responses are offset by benefits 

of correct responses (see Lynn & Barrett, 2014; Lynn et al., 2014). However, when base rate 

or payoffs do specify a non-neutral optimal bias, the perceiver’s sensitivity becomes a third 

biasing parameter (Figure 1B, and see e.g., Stretch & Wixted, 1998; Lynn et al., 2012). For 

example, effectively avoiding obstacles in conditions of poor visibility requires more 

cautious behavior than in conditions of good visibility. The increase in cautiousness (more 

extreme bias) under poor visibility is called for, not because obstacles are more common (an 

increase in base rate) or more costly to hit (a change in payoffs), but because they are harder 

to discriminate from open space (a decline in perceiver sensitivity). To achieve the optimal 

blend of correct and incorrect judgments, given their benefits, costs, and likelihoods, 

perceivers with low sensitivity must adopt a more extreme bias than perceivers with high 

sensitivity (Lynn & Barrett, 2014).

In sum, working memory is associated with accuracy in emotion perception tasks (e.g., 

Phillips et al., 2008). In the presence of uncertainty and risk, which likely characterizes 

emotion perception outside the laboratory, SDT decomposes accuracy into sensitivity and 

bias. We can, then, recognize three hypotheses by which WMC might influence emotion 

perception under uncertainty and risk: (1) high WMC promotes sensitivity, which produces 

high accuracy (Lynn & Barrett, 2014); (2) high WMC promotes neutral response bias, 

which, under the unbiased designs typical of many emotion perception experiments, 

produces high accuracy (e.g., Lynn et al., 2014); and (3) high WMC promotes the 

perceiver’s ability to optimize his or her bias to one of the three parameters that influence 

bias, (i) base rate, (ii) payoff, and (iii) the perceiver’s own sensitivity. Prior experiments 

measuring accuracy are unable to distinguish these three alternative hypotheses, and 

experiments that impose a neutral bias cannot distinguish hypothesis 2 from 3, because in 
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such experiments neutral bias is optimal bias. Here, we implemented tasks capable of 

distinguishing these three hypotheses. Identifying the correct mechanism by which WMC 

influences decision is important for programs seeking to improve decision making or to 

understand differences in the effectiveness of decision making across individuals.

The Current Study

Our research question was: What is the role of WMC in emotion perception under 

perceptual uncertainty and behavioral risk? To address this question we examined the 

association between individual differences in WMC and emotion perception by 

manipulating levels of uncertainty and risk in an anger perception task. Uncertainty was 

implemented by “angry” and “not angry” categories comprised of shared morphed facial 

scowl intensities. Risk was implemented by points earned or lost for correct and incorrect 

responses, respectively. Participants attempted to earn as many points as they could by 

categorizing faces as angry or not angry (Figure 1). We can distinguish hypotheses 1–3 by 

comparing the influence of WMC on sensitivity and bias. We can distinguish hypotheses 3i–

iii by systematically manipulating the three parameters that influence bias. On a first visit to 

the laboratory, all participants completed a mildly conservatively biased “baseline” version 

of the task. On a return visit to the laboratory, participants completed a “contrast” version of 

the task that differed from baseline by the manipulation of one of the three parameters that 

influence bias. Relative to baseline, the contrast task demanded either (i) more conservative 

bias due to high base rate of angry faces, (ii) more liberal bias due to costly missed detection 

mistakes, or (iii) more conservative bias due to low sensitivity.

Method

Participants

One hundred thirty-two participants were recruited via fliers posted on and around an urban 

college campus. Participants were 18–54 years old years (median = 19 years 75th percentile 

at 23 years), 62% women, 58% Caucasian, 11% African-American, 23% Asian, and 6% 

Hispanic. Exclusion criteria were self-assessed, and comprised lifetime psychiatric 

diagnosis, severe unstable medical illness, history of seizure disorder, current use of 

psychiatric medications, recreational drug use in the prior two weeks, and, at the second 

laboratory visit, alcohol or caffeine consumption in the prior 12 hours. All participants gave 

informed consent in accordance with the policies of the Northeastern University Institutional 

Review Board, which approved all procedures. Participants visited the laboratory on two 

occasions, to complete the baseline and contrast emotion perception tasks, respectively. 

Median time between visit 1 and visit 2 was seven days. Participants were compensated with 

cash at the end of each visit and earned $15–$20 at visit 1 and $20–$25 at visit 2.

Emotion Perception Tasks

Four stimulus sets were created, two male and two female, using males 22 and 211 from the 

Color 2D Facial Emotional Stimuli (Gur et al., 2002), female 23 from Karolinska Directed 

Emotional Faces (Lundqvist, Flykt, & Ohman, 1998), and female 6 from the NimStim Set of 

Facial Expressions (Tottenham et al., 2009). The face images were converted from color to 
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grey scale, rescaled to have equal distance between left and right auricular notches, and 

placed on a black background. For each photographic model, we created a continuum of 

facial scowl intensity by digitally blending (FantaMorph 4, Abrosoft) his or her happy and 

angry facial expression depictions to generate a series of 11 “morphs” that ranged from 0% 

to 100% scowling in 10% increments. The set of 11 morphed images comprised a stimulus 

set (Figure 1A depicts one such set). Viewed on an LCD computer monitor from 

approximately 0.6 m distance, the faces subtended approximately 11° horizontally x 15° 

vertically. This experiment was part of a larger study on perception of social threat, and that 

focus was the motivation for our use of smiling vs. scowling facial expressions.

The values for target:foil base rate, perceptual similarity, and payoffs controlled details of 

stimulus presentation and response feedback (see Table 1). The target:foil base rate specified 

the proportion of “angry” to “not angry” trials. On each trial, a computer program 

determined whether that trial would show an angry face (i.e., a stimulus to be drawn from 

the target distribution) or not-angry face (i.e., a stimulus to be drawn from the foil 

distribution), guided by the base rate. The stimulus to be shown on a particular “angry” trial 

or a “not angry” trial was randomly drawn from the respective Gaussian signal distribution 

imposed on the 11-item stimulus continuum (Figure 1A). Mean and variance of the 

distributions controlled perceptual similarity of the target (angry) and foil (not-angry) 

categories. All 11 stimuli on the continuum had some likelihood of being shown as an 

exemplar of both the target and foil categories; that likelihood was determined by the 

respective signal distributions. There was, thus, a correct answer for each of these signal-

drawn trials but participants experienced uncertainty as to what the correct answer was. 

Payoffs for correct and incorrect categorization of a face as angry or not angry were 

implemented as points earned or lost following each judgment. The uncertainty is a defining 

feature of a signal detection problem; it is literally impossible to achieve 100% accuracy. 

However, the probability density functions that characterized the target and foil categories 

and the base rate of encountering those categories create statistical regularities in the 

perceptual environment. Participants can learn these regularities, associating resultant 

benefits and costs with the particular stimulus that they just categorized. Participants were 

instructed to earn as many points as they could as they learned to categorize the faces. 

Neither response speed nor accuracy were mentioned in participant instructions.

Each trial began with a white fixation cross (300 ms duration) centered on a black screen, 

followed by a single face stimulus (500 ms duration). A response prompt (“Was that 

anger?”) followed the face and remained on-screen until the participant responded by using 

his or her index fingers to press USB keyboard buttons labeled “Yes” and “No”. Participants 

earned and lost points for correct or incorrect answers, and received immediate on-screen 

feedback (“That was correct.” or “That was incorrect.”, points earned or lost for the current 

trial, and total cumulative points). A 300 ± 100 ms inter-trial interval (black screen) followed 

the feedback. One thousand trials were presented. Participants received a rest break after 

trial 500. After trial 700, a final 190 regular trials were interspersed with 110 confidence-

rated trials. On a confidence-rated trial, after the yes/no face categorization, a confidence 

rating screen replaced the regular feedback screen. Participants were asked to rate their 

confidence in the yes/no judgment they had just made on a 9-point scale. We elicited 10 

confidence ratings for each of the 11 stimuli on the continuum. Confidence-rated trials were 
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included for analysis of meta-cognitive awareness as part of the larger study. Confidence-

rated trials were not drawn from the target and foil signal distributions so did not have 

correct answers, and these trials are not analyzed here. Sensitivity and bias were calculated 

over the 890 signal-drawn trials (Figure 1A). The task was preceded by 11 practice trials, 

including two confidence-rated practice trials. Participants finished the task in approximately 

45 minutes. Stimulus set and response label locations (on the “z” and “/” buttons) were 

randomized across participants, with the exception that a different stimulus set was used for 

visit 1 and visit 2. The task was programmed in Matlab (The Mathworks, Inc.) with 

Psychophysics toolbox (Brainard, 1997).

At visit 1, all participants experienced the same baseline condition. This condition imposed a 

mildly conservative bias via unbalanced payoffs (the values for target:foil perceptual 

similarity, base rate, and payoffs are given in Table 1 and depicted in Figure 1). At visit 2, 

participants were assigned to one of three “contrast” conditions (Table 1). The base rate 
contrast condition (n=41) imposed more conservative bias than baseline by implementing a 

lower proportion of trials drawn from the “angry” distribution. The payoff contrast condition 
(n=47) imposed more liberal bias than baseline by implementing a greater loss of points for 

missed detection mistakes (i.e., responding to an angry trial as if it were a not-angry trial) 

and a lower loss of points for false alarm mistakes (i.e., responding to a not-angry trial as if 

it were an angry trial). The sensitivity contrast condition (n=44) imposed more conservative 

bias than baseline by increasing the target and foil distributions’ standard deviations to cause 

a decrement in perceiver perceptual sensitivity (see Figure 1B).

Working Memory Capacity Task

We evaluated WMC with the Run Letter Span task (Broadway & Engle, 2010), an 

automated running memory span task (Unsworth, Heitz, Schrock, & Engle, 2005), 

administered in E-Prime 2 (Psychology Software Tools, Inc). Participants viewed letters on a 

computer screen one at a time (300 ms letter duration, 200 ms inter-letter interval). On each 

trial, m distractor letters preceded n target letters (m=0, 1, or 2; n=3, 4, 5, or 6). Participants 

attempted to report the target letters in order of appearance, and could leave blank any serial 

positions for which the letter could not be recalled. Number of targets was blocked, with the 

blocks randomly ordered. Number of distractors was randomized (without replacement) 

within blocks. Thus, there were m=3 trials in each of n=4 blocks, for 12 trials in all. 

Participants were informed of the target length prior to each block, and the response screen 

for each trial again prompted participants for the number of targets. Including delivery of 

instructions, this task lasts approximately 6 minutes and compares favorably with longer-

duration complex-span tasks (Broadway & Engle, 2010). Excluding trials on which m=0 

(short-term memory trials, for which WMC is assumed to be unnecessary), one point was 

scored for each letter correctly assigned to its serial position, for a maximum of 36 points 

possible. See Broadway & Engle (2010) for further details.

Procedure

On visit 1, after informed consent, participants completed the baseline emotion perception 

task. Immediately following the emotion perception task we assessed WMC. The WMC task 

was followed by self-report questionnaires as part of the larger study. On visit 2, participants 
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completed the contrast emotion perception task in addition to other tasks and self-report 

questionnaires as part of the larger study.

Analyses

Trials with a response time <250 ms were excluded from analysis due to the likelihood of 

their containing motor errors, resulting in exclusion of 0.1–5% of trials from 43% of 

participants. We calculated sensitivity (d′) and bias (c) on the remaining trials (equations 1 

and 7, respectively, of Stanislaw & Todorov, 1999). We calculated bias optimality, the 

degree to which a perceiver achieves the amount of bias that will maximize his or her 

expected point earnings over the series of trials, as dO, the distance from the point defined by 

a participant’s observed sensitivity and bias to the task’s “line of optimal response” (LOR, 

Figure 1B; see equations 1 and 2 of Lynn & Barrett, 2014). Because dO expresses a 

perceiver’s bias relative to the bias that is optimal for environmental base rate and payoff 

values, it permits a measurement of whether a perceiver is too biased vs. not biased enough, 

taking into account the perceiver’s sensitivity. Shorter distance-to-LOR reflects more 

optimal bias: For a given level of sensitivity, perceivers whose bias places them closer to the 

LOR will accrue more points over a series of decisions. Distance to the LOR as a measure of 

optimality can be confounded by the separate influences of sensitivity on utility (higher 

sensitivity produces higher point earnings) and on distance (higher sensitivity requires less 

extreme bias to achieve optimality) (Lynn et al., 2012). Accordingly, we controlled for 

sensitivity in all analyses of dO by analyzing residual dO after regression on d′.

We used multivariate regression (SPSS 21, IBM Corporation) to directly compare effect 

sizes of the associations between WMC and three dependent measures of performance: 

sensitivity, bias, and bias optimality. Multivariate regression, distinct from multiple 

regression, permits the simultaneous evaluation of the association between an independent 

variable (i.e., WMC) and multiple dependent variables. Multivariate regression avoids the 

potential increase in experiment-wise error rate engendered by running individual analyses 

for each dependent variable. We analyzed the four experimental conditions in separate 

multivariate regressions. The level of statistical significance for all tests was set to 

alpha=0.05 (two-tailed).

Results

Mean WMC did not significantly differ among the three contrast conditions (F[2,129]=1.7, 

p>0.18). However, variance of WMC differed significantly among the groups (Levene’s Test 

for Equality of Error Variances: F[2,129]=7.1, p<0.002). The sensitivity contrast condition 

possessed significantly higher variance than the base rate or payoff contrast conditions 

largely due to more thorough sampling of low WMC participants. Multivariate regression 

indicated no difference in the influence of WMC on task performance as measured by 

sensitivity, bias, or bias optimality for the either the baseline, base rate, or payoff conditions 

(baseline: F[3,128]=1.2, p>0.32, ; base rate: F[3,37]=1.6, p>0.20, ; payoff: 

F[3,43]=0.21, p>0.89, ). WMC also showed no significant associations with any 

individual dependent variables in those conditions (Table 2).
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However, for the sensitivity contrast condition, the overall multivariate regression was 

significant (F[3,40]=3.0, p<0.045, ), indicating that the influence of WMC differed 

among the dependent variables when it was difficult to discriminate targets from foils. While 

WMC was not significantly associated with perceiver sensitivity, higher WMC was 

significantly correlated with more extreme bias and better bias optimality (Table 2, Figure 

2). Participants with higher WMC were better able to adjust their bias to accommodate their 

sensitivity than were participants with lower WMC.

In summary, we found support for the hypothesis that high WMC promotes a perceiver’s 

ability to optimize his or her bias when bias is driven by the perceiver’s own sensitivity 

(hypothesis 3iii). WMC did not improve emotion perception by increasing sensitivity 

(hypothesis 1); WMC was not associated with sensitivity in any of the four conditions. 

WMC did not affect emotion perception by promoting neutral response bias (hypothesis 2) 

because higher WMC was only associated with less-neutral (higher) response bias (in the 

sensitivity contrast condition and, marginally, in the base rate contrast condition). High 

WMC did not promote perceivers’ abilities to optimize their bias when bias was driven by 

base rate (hypothesis 3i) or payoffs (hypothesis 3ii).

This pattern of results indicates that WMC does not strongly influence measures of 

performance when it is relatively easy to discriminate targets from foils, despite 

environmental pressure to adapt bias to base rate or payoffs. Instead, it was only in the 

condition demanding extreme bias due to low sensitivity that WMC was associated with 

bias. Alternative analyses of the three dependent variables as contrast-baseline difference 

scores and in multiple regressions controlling for baseline performance showed this same 

pattern of significant vs. null associations with WMC.

Discussion

Our results suggest that high WMC promotes optimizing judgments about the emotional 

state of others specifically by contributing to perceivers’ ability to adjust their response bias 

to account for their level of perceptual sensitivity. WMC was not associated with perceivers’ 

ability to adjust their response bias to base rate or payoffs. Response bias and sensitivity are 

not independent in perceivers: Under biased conditions, perceivers seeking to maximize 

expected value must tune their bias to their own level of sensitivity (Figure 1B). Perceivers 

must adjust their exposure to the four possible decision outcomes (correct detections, missed 

detections, false alarms, and correct rejections) as the likelihoods of those outcomes change 

concomitant with changes in perceptual uncertainty. Biased conditions arise when the 

perceiver’s encounter rate with targets vs. foils is unequal and/or when the outcome payoffs, 

the benefits and costs accrued by the perceiver, do not cancel out. We believe that, outside 

the laboratory, most signal detection issues, including emotion perception, are biased in 

these ways.

Our data indicate that WMC is specifically linked to adapting bias to ideographic sensitivity. 

The adjusting of bias to account for sensitivity effectively constitutes a weighting on how 

base rate and payoffs influence behavior. Low sensitivity weights the influence of base rate 

and payoffs on behavior more strongly than high sensitivity. We speculate that adjustment of 
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bias to account for sensitivity may be more cognitively demanding than adjustment of bias 

to either base rate or payoffs alone, or to acquiring sensitivity itself, revealing the WMC 

relationship. Executive functions, such as working memory, cognitive control, and attention, 

are integrated with perceptual judgments (e.g., Pessoa & Engelmann, 2010), including 

perception of facial emotion (e.g., Pessoa, Kastner, & Ungerleider, 2002; Rolls, 2007; 

Tottenham, Hare, & Casey, 2011). The integration of context (here characterized by the three 

signal detection parameters) as an aid to optimizing risky perceptual judgments over 

ambiguous percepts may be one function of that integration.

We tested participants under four conditions (Table 1). WMC influenced bias optimality in 

the sensitivity condition but not in the baseline, base rate or payoff conditions (Table 2). The 

critical feature distinguishing the condition in which WMC was influential from those in 

which it was not is the perceivers’ ability to discriminate the ambiguous categories. This 

result suggests that WMC is particularly important when perceptual uncertainty is high. 

Nonetheless, WMC did not, itself, contribute to resolving the uncertainty, i.e., to improving 

sensitivity. In no conditions was WMC associated with perceiver sensitivity. Rather, WMC 

appears to contribute to operating under the uncertainty–optimally tuning bias given the 

difficulty of the discrimination.

In the sensitivity contrast condition, participants, as a group, were not particularly successful 

at adjusting their bias (Table 2). Relative to the baseline condition, these participants 

exhibited very little change in raw bias (c) and the worst (highest value) bias optimality (dO). 

Adapting bias to decreasing sensitivity appears to be difficult, something we have seen in 

prior work (Lynn et al., 2012). Could WMC, then, simply be taxed in situations in which it is 

difficult to adapt bias, regardless of the parameter demanding that adaptation? Results from 

the other conditions argue against this explanation. Participants in the base rate condition 

also did not achieve particularly optimal bias, despite a large overall change in raw bias 

relative to the baseline condition. In addition, participants in the liberal-going payoff 

condition did not achieve especially liberal raw bias, despite achieving the best bias 

optimality (adaptation of bias to payoffs is known to be difficult to accomplish, relative to 

adaptation to base rate [Bohil & Maddox, 2001; Maddox & Bohil, 2005]). Finally, we found 

no association between WMC and bias or bias optimality in the base rate or payoff 

conditions. Together, these results indicate that WMC is not associated with difficult bias 

adaptation per se.

Prior studies show another role for working memory in emotion perception: selecting the 

correct semantic label from alternatives (Phillips et al., 2007; Phillips et al., 2008). Phillips 

et al. (2008) used a dual-task design to show that accuracy on emotion labeling tasks 

decreased under working memory load imposed by a concurrent 2-back letter recognition 

task. The performance decrement was higher with more label options from which to choose, 

but still present for a two-label condition. Performance on a label-free same/different task 

was unimpaired under working memory load, indicating that the semantic aspect of label 

selection involves working memory. Our yes/no tasks implied two labels, “angry” and “not 

angry”, which were explicitly referenced in the participant instructions. The contrast of 

positive vs. null results among our conditions show that any semantic aspects of our task 
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cannot, alone, be responsible for the effects we found (nor, likewise, for the effects shown by 

Lim et al., 2014], who also used a yes/no task over a range of facial expression intensity).

Our emotion perception task possesses functional characteristics analogous to those shown 

to be influenced by WMC in research outside affective science. These characteristics include 

the ability to adopt strategies in response to feedback (Schunn & Reder, 2001) and deciding 

among risky outcomes (Cokely & Kelley, 2009). Again, however, the contrast of positive vs. 

null results among our conditions suggests that these functional characteristics are not, 

alone, responsible for the effects we found. Only under conditions of substantial perceptual 

uncertainty did WMC emerge as a critical factor in performance. The interaction of 

perceptual uncertainty with these other characteristics is a relatively unexplored area in both 

decision making and working memory. Relevant to understanding this interaction, Lim, et 

al., (2014) showed an increased rate of categorizing intense expressions as targets with 

higher working memory load. This pattern could be interpreted as a greater reliance on 

prepotent responses under load, congruent with an association between low WMC and 

expression of prepotent response (Ilkowska & Engle, 2010). Whether prepotent responses 

are helpful or not is context dependent (e.g., Jamieson & Harkins, 2009), suggesting areas 

for future study.

Our emotion perception task differs from tasks that ask participants to choose which of 

several emotion words best matches a posed, exaggerated facial depiction (faces exemplified 

by the end points of continuum in Figure 1; e.g., Phillips et al., 2008) or to dichotomously 

categorize faces drawn from a continuum of expressive intensity in the absence of corrective 

feedback (e.g., Lee et al., 2012; Lim et al., 2014). Instead, we required participants to 

optimize their perceptual decisions by learning from the outcomes of their past decisions. As 

a learning experiment, our results suggest that WMC may promote perceivers’ ability to 

optimally adapt their emotion perception to the differences in risk and uncertainty that 

characterize different social contexts. Using SDT as a conceptual model of emotion 

perception implies that switching social partners involves switching sets of signal parameter 

values. For example, interacting with a peer vs. a superior may involve adopting different 

sets of benefits and costs of correct and incorrect judgments. Likewise, meeting someone 

new may involve constructing target and foil signal distributions that describe what the new 

person looks like when he or she is experiencing different emotional states as well as 

estimating the base rate of encountering the new person in those states. WMC may aid 

perceivers’ ability to effectively adapt their behavior to such changing or novel contexts.

As one example of the importance of understanding how WMC influences emotion 

perception (and mental state attribution more generally), Kleider et al. (2010) found that 

police officers with lower WMC exhibited lower sensitivity on a simulated shoot/don’t-shoot 

task than officers with higher WMC. The effect was only observed among officers 

experiencing heightened negative arousal. The task was unbiased, involved a go/no-go 

response under time pressure, and induced high-arousal negative affect. The task thus 

differed from our anger perception task in several potentially important ways that suggest 

directions for future studies–affective state, amount of environmental bias, and time pressure 

may modulate how WMC influences decisions under perceptual uncertainty.
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We used blends of smiling and scowling facial depictions framed as an anger detection task. 

Whether the association between WMC and optimal adjustment of bias to sensitivity 

generalizes to other social decisions or to non-social domains is an open question. Given the 

ubiquitous nature of signal detection issues in real-world decision making (e.g., Swets, 

Dawes, & Monahan, 2000) and the importance of WMC across a diversity of human 

behavior (e.g., Barrett et al., 2004), such generalizability seems likely.

One limitation of the present studies relevant to the generalizability of our results is that we 

did not manipulate WMC or test anger perception under working memory load. Therefore, 

our results do not establish a causal link between WMC and optimal adjustment of bias to 

sensitivity, a direction for future studies. Another limitation is the difference in WMC 

variance across our contrast conditions. Restricted range of an independent variable can be a 

cause of failure to find a relationship with the dependent variable when one in fact exists. In 

addition, it could be that low WMC is associated with difficulty adapting bias to any biasing 

factor. For these reasons, it is possible that our failure to detect a stronger association 

between WMC and bias optimality in the payoff and base rate conditions was due to a 

relative paucity of low WMC participants in those conditions. Arguing against these points, 

and supporting the contention that low sensitivity is a critical element, is the observation that 

the baseline condition, which included all participants and permitted high sensitivity, found 

no relationship between WMC and bias optimality despite containing the complete range of 

WMC and a much larger sample size. Further research will be necessary to address these 

limitations.

Barrett and colleagues (Barrett et al., 2004; Barrett, 2008) hypothesized that WMC should 

affect the flexibility and effectiveness with which perceivers can utilize emotion knowledge. 

One circumstance in which the utilization of emotion knowledge manifests is emotion 

perception judgments. When inferring the emotional state of another person, a perceiver 

presumably applies his or her existing emotion knowledge to the situation, modifying a 

priori expectations based on knowledge about the current social context. Such knowledge 

may comprise representations of the likelihood of encountering the emotion, the benefits and 

costs of correct and incorrect judgments, and the similarity of associated facial expression 

cues–the parameters of signal detection. Our results suggest that WMC is particularly 

important to emotion perception, and perhaps decision in general, when judgments are made 

in contexts of perceptual uncertainty and behavioral risk.
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Figure 1. 
Emotion perception as a signal detection issue. (A) Signals (instances of facial emotion), 

arise from two categories: targets (e.g., anger) and foils (e.g., not-anger). Signals from either 

category vary over a perceptual domain, from weak to strong cues of the emotion categories 

(e.g., scowl intensity as a cue of anger, on the x-axis). Here, the perceiver responds to faces 

above (to the right of) his or her decision criterion (arrow) as if they are angry, and to faces 

below criterion as if they are not angry, yielding four possible outcomes: An above-criterion 

angry face is a correct detection, an above-criterion not-angry face is a false alarm mistake, a 

below-criterion angry face is a missed detection mistake, and a below-criterion not-angry 

face is a correct rejection. Three mathematical parameters describe the decision 

environment: the perceptual similarity of the target and foil categories (described here by 

Gaussian distribution means and standard deviations), payoffs accrued for each category 

judgment (benefits and costs associated with the four outcomes), and the base rate of 

encountering signals from the target vs. the foil category. Measures of perceptual sensitivity, 

depicted as overlap of targets and foils, characterize the amount of perceptual uncertainty in 

the environment or experienced by a perceiver. Measures of response bias characterize the 

decision criterion’s location on the perceptual domain. Response bias is described as 

conservative (rightward, categorizing only strong signals as angry), liberal (leftward, 

categorizing even weak signals as angry), or neutral (in the middle). By combining these 

parameters, signal detection theory’s expected value function estimates the optimal criterion 

location for a given set of parameter values (e.g., Lynn & Barrett, 2014): Responding to all 

faces right of this criterion as “angry” will maximize expected value. (B) The combination 

of base rate, payoffs, and perceived similarity of targets vs. foils determines a “line of 

optimal response” (LOR, curve plotted on inset graph; see Lynn & Barrett, 2014). The LOR 

relates a perceiver’s sensitivity (x axis) to the amount of bias (y axis) that will optimize the 

perceiver’s decision making. Lower perceptual sensitivity, visualizable as higher standard 

deviations of the Gaussian distributions in panel A, requires a more extreme decision 

criterion location to maximize net benefit over a series of judgments. Panels A and B depict 

conditions in the baseline emotion perception task described in Method.
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Figure 2. 
A scatter plot of the relationship between bias optimality (dO controlling for perceptual 

sensitivity, d′) and working memory capacity in the sensitivity contrast condition. Shorter 

dO is better, therefore higher working memory capacity was associated with better ability to 

adjust response bias to subjective perceptual sensitivity (r2=.11).
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Table 2

Descriptive Statistics (M±SD) and Multivariate Regression Results for Individual Dependent Variables 

(Sensitivity, Bias, and Bias Optimality) with WMC as the Independent Variable

Condition

Baseline Base rate contrast Payoff contrast Sensitivity contrast

n 132 41 47 44

WMC 22.0±7.11 23±5.29 22.7±6.33 20.4±9.02

Sensitivity (d′) 1.5±0.23 1.4±0.24 1.4±0.24 0.8±0.19

 F 0.0 0.7 0.3 1.8

 p 0.93 0.40 0.57 0.19

  

0.00 0.02 0.01 0.04

Bias (c) 0.1±0.18 0.8±0.27 0±0.18 0.1±0.37

 F 0.3 3.8 0.3 4.6

 p 0.58 0.06 0.61 0.04*

  

0.00 0.09 0.01 0.10

Bias optimality (dO) 0.4±0.18 0.6±0.21 0.5±0.17 0.6±0.31

 F 0.0 5.3 0.3 5.3

 p 0.99 0.11 0.59 0.03*

  

0.00 0.06 0.01 0.11

Note. n = number of participants, WMC = working memory capacity, F-test degrees of freedom = (1, n-2), and * indicates statistical significance.
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