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Decline in cognitive skills, especially in memory, is often viewed as part of “normal” aging. Yet some individuals “age better” than others.
Building on prior research showing that cortical thickness in one brain region, the anterior midcingulate cortex, is preserved in older
adults with memory performance abilities equal to or better than those of people 20 –30 years younger (i.e., “superagers”), we examined
the structural integrity of two large-scale intrinsic brain networks in superaging: the default mode network, typically engaged during
memory encoding and retrieval tasks, and the salience network, typically engaged during attention, motivation, and executive function
tasks. We predicted that superagers would have preserved cortical thickness in critical nodes in these networks. We defined superagers
(60 – 80 years old) based on their performance compared to young adults (18 –32 years old) on the California Verbal Learning Test Long
Delay Free Recall test. We found regions within the networks of interest where the cerebral cortex of superagers was thicker than that of
typical older adults, and where superagers were anatomically indistinguishable from young adults; hippocampal volume was also
preserved in superagers. Within the full group of older adults, thickness of a number of regions, including the anterior temporal cortex,
rostral medial prefrontal cortex, and anterior midcingulate cortex, correlated with memory performance, as did the volume of the
hippocampus. These results indicate older adults with youthful memory abilities have youthful brain regions in key paralimbic and
limbic nodes of the default mode and salience networks that support attentional, executive, and mnemonic processes subserving memory
function.
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Introduction
As humans age, memory and many other cognitive functions
often decline. When a neuropsychologist evaluates an older

adult, “normal” performance is substantially lower than that of a
younger adult. For example, on the California Verbal Learning
Test (CVLT), an average 25-year-old remembers 14 words, while
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Significance Statement

Memory performance typically declines with age, as does cortical structural integrity, yet some older adults maintain youthful
memory. We tested the hypothesis that superagers (older individuals with youthful memory performance) would exhibit pre-
served neuroanatomy in key brain networks subserving memory. We found that superagers not only perform similarly to young
adults on memory testing, they also do not show the typical patterns of brain atrophy in certain regions. These regions are
contained largely within two major intrinsic brain networks: the default mode network, implicated in memory encoding, storage,
and retrieval, and the salience network, associated with attention and executive processes involved in encoding and retrieval.
Preserved neuroanatomical integrity in these networks is associated with better memory performance among older adults.

The Journal of Neuroscience, September 14, 2016 • 36(37):9659 –9668 • 9659



an average 75 year-old remembers 9 words, more than 2 SDs
lower (Delis et al., 1987). Nevertheless, there is substantial varia-
tion in the degree of cognitive decline with age. Some older
adults—referred to by one group as “superagers”— continue to
perform at a level similar to middle-aged adults (Harrison et al.,
2012; Rogalski et al., 2013; Gefen et al., 2014; Gefen et al., 2015),
and sometimes even young adults (Weintraub et al., 1994). In-
vestigation of the biological mechanisms associated with “youth-
ful” cognitive function in such individuals is crucial to
understanding “successful aging” (Depp and Jeste, 2006). In this
study, we sought to replicate and extend prior work on superag-
ing by testing hypotheses regarding the structural integrity of two
key brain networks that contribute to memory function.

Memory requires that information be encoded, stored, and
retrieved. To explicitly encode information, such as a list of
words, an individual must first be motivated to attend to the
relevant material, engage working memory, and organize the in-
formation (Wolk et al., 2011). Broadly speaking, these functions
are subserved by fronto–parietal– cingulate circuitry, variously
referred to as attentional (Corbetta and Shulman, 2002), execu-
tive (Dosenbach et al., 2006; Cole and Schneider, 2007), working
memory (Koechlin et al. 1999; Gruber and Goschke 2004),
and/or salience systems (Seeley et al. 2007; Touroutoglou et al.,
2012). In conjunction with circuitry supporting semantic mem-
ory, this circuitry is engaged when new information is organized
within the context of previously existing knowledge (Simons and
Spiers, 2003; Squire, 2007). Once encoded, information is con-
solidated and stored as “long-term episodic memories,” by way of
the medial temporal lobe (MTL) memory system localized in the
hippocampus, medial temporal cortex, and retrosplenial/poste-
rior cingulate cortex (Squire et al., 2004), as well as other key
nodes of the default mode network (Dickerson and Eichenbaum,
2010). When information is subsequently retrieved (e.g., during
free recall of a word list), attentional, salience, executive, and
semantic networks are engaged in conjunction with the MTL
memory system; when any of these brain regions are lesioned,
memory retrieval is impaired (Wolk et al., 2011).

Normal aging is well known to be accompanied by wide-
spread reductions in the thickness of many of these brain
regions (McGinnis et al., 2011; Bakkour et al., 2013), in par-
allel with age-related decline in memory function (McDaniel
et al., 2008). Age-related atrophy is particularly prominent in
key frontoparietal nodes of the working memory, executive,
salience, and default mode circuitry, such as in lateral and
medial prefrontal and lateral parietal cortices, as well as por-
tions of the cingulate cortex and medial temporal lobe
(McGinnis et al., 2011; Bakkour et al., 2013). Based on this
summary of the processes that subserve memory function and
our knowledge of age-related cortical changes, we hypothe-
sized that superagers would exhibit “youthful” neuroanatomy

within the networks summarized here. We further hypothe-
sized that, within the entire group of cognitively normal older
adults, the cortical thickness of these brain regions would pre-
dict individual differences in memory performance.

Materials and Methods
Participants. Ninety-one participants (48 males, 43 females) were re-
cruited from the greater Boston area, comprising young adults (ages
18 –35; 24 males, 23 females) and elderly adults (ages 60 – 80; 24 males, 20
females). They were phone screened to ensure MRI scan eligibility and
compensated with payment for their completion of the study. All indi-
viduals were right-handed native English speakers and had normal or
corrected-to-normal vision. No participant reported a history of neuro-
logical or psychiatric disorders. Additional exclusionary criteria included
MRI safety incompatibility, substance dependence, and CNS-active
medications.

Neuropsychological criteria for superaging. All participants were re-
quired to score within 1.5 SDs of published normative values for each
neuropsychological instrument on the basis of their age and education.
To be designated as a superager, an elderly adult was required to meet two
strict psychometric criteria similar to previous studies (Harrison et al.
2012; Rogalski et al., 2013; Gefen et al., 2014). First, they were required to
perform at or above the mean gender-adjusted value for young adults
(age range, 18 –32) on the Long Delay Free Recall measure of the CVLT
(CVLT-LD). Second, they were required to perform no lower than 1 SD
below the mean for their age group on the Trail Making Test Part B
(TMT-B) (Tombaugh, 2004). All older adults participants not meeting
these criteria were designated as typical older adults.

Study procedures. Participants arrived at the lab on Day 1 to com-
plete a neuropsychological battery of tests, including the CVLT (Delis
et al., 1987); TMT (Reitan, 1958; Strauss et al., 2006); portions of the
Executive Abilities: Measures and Instruments for Neurobehavioral
Evaluation and Research (EXAMINER) battery (Kramer et al., 2014)
including Flanker and the Continuous Performance Task, 1- and
2-back; and the Mini–Mental State Examination (MMSE; Folstein et
al., 1975). On Day 2 (1–3 d later), participants completed a standard-
ized MRI scan from which measurements of neuroanatomy were
obtained.

MRI acquisition. MRI scans were collected on a 3 Tesla Tim Trio Sys-
tem using a 12 channel phased-array head coil (Siemens) and a sta-
ndardized high resolution T1-weighted magnetization-prepared rapid
gradient echo protocol optimized for gray–white contrast [repetition
time (TR), 2530 ms; echo time (TE), 3.48 ms; flip angle (FA), 7°; 256 �
256 (1 mm 2 � 1 mm 2) in-plane resolution; 176 sagittal slices (1 mm
thickness)].

A priori functional network definition. As elaborated in the intro-
duction, we used a hypothesis-driven approach focusing on two
large-scale intrinsic connectivity brain networks known to be impor-
tant for memory: the default mode network, as defined by Andrews–
Hanna et al. (2010), and the salience network, as defined by
Touroutoglou et al. (2012) (networks illustrated in Fig. 1). We iden-
tified these networks by analyzing data from an independent sample
of 89 young adults (44 men) ranging in age from 18 to 33, with a mean
age of 22.4 years (SD, 3.34) as detailed in the study by Touroutoglou
et al. (2012). In brief, whole-brain resting-state fMRI data (TR, 3000
ms; TE, 30 ms; FA, 90 o; 3.0 mm isotropic voxels; 47 slices; 2 runs of
124 time points) were preprocessed, and two spherical regions of
interest (ROIs; 4 mm radius) were used as seed regions: the right
dorsal anterior insula (�36, 21, 1, MNI), to identify the salience
network, and the posterior cingulate cortex (�8, �56, 26, MNI), to
identify the default mode network. We computed Pearson’s product
moment correlations, r, between the mean signal time course of the
seed ROIs and the time course of all voxels across the brain. The
resulting correlation maps were converted to z values, using Fisher’s
r-to-z transformation, and were averaged across subjects. The two
resultant correlation maps were projected to the FreeSurfer fsaverage
surface and binarized at a threshold of z(r) � 0.2 (Van Dijk et al.,
2010). These two networks of interest were used as masks in the
subsequent analysis comparing superagers to typical older adults.
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Analysis of structural MRI data. FreeSurfer version 5.3 (http://surfer.
nmr.mgh.harvard.edu) was used for all MRI data analysis. Each struc-
tural volume underwent spatial and intensity normalization, skull
stripping, and an automated segmentation of cerebral white matter
(Dale et al., 1999) to locate the gray–white boundary. Defects in the
surface topology were corrected (Fischl et al., 2001), and the gray–
white boundary was deformed outward using an algorithm designed
to obtain an explicit representation of the pial surface. Cortical thick-
ness was then derived from the distance between the gray–white
boundary and the pial surface across the entire cortical mantle (Fischl
and Dale, 2000). In accordance with a standardized, objective quality
assurance protocol, the reconstructed cortical surface was visually
inspected for technical accuracy and manually edited when necessary
(minimal manual editing was required in the current study). This
automated procedure is highly reliable across sessions and scanning
platforms (Dickerson et al., 2008).

To identify regions of significantly thicker cortex in superagers
than in typical older adults, we generated statistical surface maps
using the general linear model analysis in FreeSurfer, comparing cor-
tical thickness between the two groups for each vertex of the cortical
surface within the network-of-interest masks. For this analysis, we
used a statistical threshold of p � 0.05 uncorrected. This map—
depicting locations on the cortical surface where superagers showed a
thicker cortical ribbon than typical older adults (Fig. 2)—was used to
generate ROIs for subsequent brain-behavior analyses and to com-
pare with younger adults; that is, for each cluster in Figure 2 that fell
within the masked networks of interest, a ROI was made and the
thickness at each vertex point within the ROI was averaged to deter-
mine the thickness of each individual subject’s ROI.

To control for individual variability in thickness across the entire
cortical mantle, mean thickness of the entire cortex was regressed out
of the variance in mean thickness of each ROI. The resulting stan-
dardized residuals were used in correlation analyses to test the hy-
pothesis that they relate to memory performance (CVLT-LD scores).
To test the specificity of these relationships, four additional cortical
ROIs were selected that did not belong to either large-scale functional
network of interest, but rather were localized in primary sensory
cortical regions not hypothesized to be related to memory function.
Bonferroni corrections were used for these correlation analyses, re-
sulting in a significance threshold of p � 0.005.

Finally, we measured hippocampal vol-
ume adjusted for total intracranial volume
(raw hippocampal volume derived from the
FreeSurfer automated segmentation divided
by estimated total intracranial volume) to
test the hypothesis that the preservation of
memory function in superaging was related
to relatively preserved hippocampal vol-
ume. We also examined amygdala volume
to investigate the specificity of these
relationships.

Results
Youthful behavioral performance
in superaging
Ten participants did not complete both
the behavioral and scanning portions of
the study, resulting in a final sample size
of 81 individuals: 41 young adults (20
males, mean age, 25.1; SD, 3.62; 21 fe-
males, mean age, 24.0; SD, 3.5) and 40
elderly adults (20 males, mean age, 66.5;
SD, 6.27; 20 females, mean age, 67.3; SD,
4.68). Of the 40 elderly participants, 17
were classified as superagers (4 males,
mean age, 69.25 years; SD, 4.59; 13 fe-
males, mean age, 67.38 years; SD, 1.4).
The remaining 23 formed the “typical

older adult” group (15 males, mean age, 65.00; SD, 5.88; 9
females, mean age, 67.71; SD, 5.08). All 41 young adults
performed within the normative values for their age and
gender on CVLT and TMT-B. Results are summarized in
Table 1.

A one-way ANOVA confirmed that the three groups differed in
episodic memory performance (CVLT-LD; F(2,78) � 15.8,
p � 0.001) as well as executive functioning (TMT-B; F(2,78) � 3.94,
p � 0.03). For CVLT-LD, post hoc comparisons using the Tukey
HSD test indicated that superagers performed better than both
young adults (p � 0.01) and typical older adults (p � 0.001). For
TMT-B, superagers’ performance did not differ from typical older
adults (p � 0.53) or young adults (p � 0.40). However, typical older
adults performed worse than young adults (p � 0.05).

Post hoc comparisons between the two older adult groups re-
vealed that the superagers also performed better than typical
older adults on CVLT Trial 1, Trial 5, total learning, Long Delay
Free Recall intrusion rate, and Long Delay Free Recall semantic
clustering, and showed a trend toward better performance on
Long Delay Recognition memory accuracy. There were no differ-
ences between superagers and typical older adults on other psy-
chometric measures. There were no differences in age (p � 0.50)
or years of education (p � 0.30), but there was a trend toward a
greater number of women in the superager group than in the
typical older adult group (p � 0.08).

Post hoc comparisons between superagers and young adults
revealed indistinguishable performance on TMT-A (p � 0.16),
EXAMINER verbal fluency (p � 0.79) and category fluency (p �
0.81), and the MMSE (p � 0.83) and the CVLT-LD semantic
clustering ratio.

Structural integrity of cortex within the default mode and
salience networks
Within the default mode and salience networks, superagers
had statistically thicker cortex than typical older adults in a
number of key regions (Fig. 2A). Regions with preserved

Figure 1. We used a network approach to test the hypothesis that preserved memory in superaging is associated with preserved
structure in the salience network and default mode network. We used masks of the salience network (blue) anchored in the dorsal
anterior insula (Touroutoglou et al., 2012) and the default mode network (yellow; Andrews-Hanna et al., 2010) in our primary
analyses of preserved brain structure in superaging. For the binarized salience network, z � 0.2, and for the default mode network,
z � 0.2 (maps are shown on the “fsaverage” subject’s inflated cortical surface). The general linear model analysis depicted in
Figure 2 focuses only on cortex within these two networks.
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thickness within the default mode network included the right
angular gyrus (AG), right superior frontal gyrus (SFG), left
anterior middle temporal gyrus (aMTG), bilateral rostral me-
dial prefrontal cortex (rmPFC), and left dorsomedial prefron-
tal cortex (dmPFC). Note that the left dmPFC region and the
right rmPFC region both extend into the dorsal/pregenual
cingulate sulcus. Regions with preserved thickness within the
salience network included the bilateral midcingulate cortex
(MCC) extending into paracingulate cortex, left midinsula
(MI), right dorsal anterior insula (dAI), right frontal opercu-
lum (FO), right dorsolateral prefrontal cortex (dlPFC), and
right inferior frontal gyrus (IFG). Preserved thickness in pri-
mary sensorimotor cortical zones, which we used here as con-
trol ROIs, included left primary somatosensory cortex (S1),

left lateral occipital cortex (lOcc), and two calcarine cortical
regions (calc 1 and calc 2).

Notably, some of these regions showed full preservation:
they were not simply thicker in superagers than in typical older
adults, but were actually statistically indistinguishable from
young adults. In the default mode network, areas of full pres-
ervation include the right AG, right SFG, left dmPFC, left
aMTG, and bilateral rmPFC. In the salience network, these
included right dAI, right dlPFC, right IFG, right dAI/FO, left
dorsal midinsula (dMI), left ventral midinsula (vMI), and bi-
lateral MCC. None of the control regions showed this degree
of preservation—the thickness of all of them in superagers was
intermediate between young adults and typical older adults, or
what we call partial preservation.

Figure 2. Regions of preserved cortical thickness in superagers within the default mode and salience networks. A, This statistical map shows regions where the cortex of superagers
is thicker than in typical older adults ( p � 0.05; depicted as a red-to-yellow heat gradient), highlighting regions within a priori hypothesized networks of interest (salience network in
blue; default mode network in pale yellow). Four control regions in primary sensory cortical areas outside the networks of interest are labeled for comparison. B, Bar graphs show mean
cortical thickness within each region labeled in the map. Although by definition all of these regions are thicker in superagers than typical older adults (TOAs), some of them are thinner
in superagers than in young adults (partial preservation indicated with asterisks), while all others are “youthful” in superagers (fully preserved cortical thickness relative to young adults).
R, Right hemisphere; L, left hemisphere. Error bars indicate SE.
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As expected, there were volumetric differences between the
three groups in the left hippocampus (F(2,35.23) � 11.22, p �
0.001), right hippocampus (F(2,29.96) � 9.75, p � 0.01), left
amygdala (F(2,33.94) � 9.58, p � 0.01), and right amygdala
(F(2,33.47) � 8.33, p � 0.01). Tukey post hoc tests indicated that
typical older adults had smaller left and right hippocampal vol-
ume (p � 0.001) compared to young adults, while superagers
showed full preservation (left, p � 0.15; right, p � 0.96). Super-
agers also had larger hippocampal volume than typical older
adults in the right hemisphere (p � 0.01) but not the left (p �
0.14). For the amygdala, typical older adults showed smaller
amygdala volume compared to young adults (left, p � 0.01; right,
p � 0.01). Amygdala volumes in superagers showed small or
trend-level differences from those of young adults (left, p � 0.05;
right, p � 0.07), but were similar to those of typical older adults
(left, p � 0.71; right, p � 0.59).

Relationship between morphometry and memory
performance in preserved brain structures
Within the entire group of older adults, the cortical thickness
of some of the ROIs reported above predicted CVLT-LD per-
formance (Table 2). In the default mode network, the regions
where cortical thickness correlated with memory performance
included the right SFG (r � 0.60), right and left rmPFC (r �
0.45 and r � 0.41; Fig. 3), and left aMTG (r � 0.41). Hip-
pocampal volume also correlated with CVLT-LD (r � 0.40;
Fig. 4). In contrast, amygdala volume showed no relationship
to memory (r � 0.17, p � 0.3). In the salience network, regions
where thickness correlated with memory performance in-
cluded right and left MCC (r � 0.55 and r � 0.38), left ventral
and dorsal midinsula (r � 0.45 and r � 0.39), right dorsolat-
eral PFC (r � 0.34), and right dorsal anterior insula (r � 0.34).

Regions selected as control ROIs did not show relationships to
memory (Table 2; Fig. 3). There was no relationship between
memory performance and morphometry of the above regions
of interest in the young adults.

Table 1. Demographic information and neuropsychological data

Neuropsychological measure
Young adult
(mean/SD)

Superager
(mean/SD)

Typical older
adult (mean/SD) ANOVA post hoc comparisons

N 41 17 23 SA vs YA TOA vs YA SA vs TOA
Sex (% female) 51.2% 70.6% 34.8.% SA � YA*** TOA � YA***
Age (years) 24.5 (3.6) 67.8 (6.0) 66.2 (5.1)
Education (years) 16.0 (2.2) 17.2 (2.2) 16.2 (2.0)
Trail Making Test A (s) 23.0 (9.4) 28.8 (7.4) 28.3 (9.6)
Trail Making Test B (s) 51.2 (17.0) 59.0 (12.8) 66.3 (30.3) TOA � YA*
CVLT Trial 1 (16) 8.6 (2.2) 9.7 (1.7) 7.3 (2.5) SA � TOA**
CVLT Trial 5 (16) 14.0 (1.8) 14.7 (1.2) 12.0 (2.6) TOA � YA*** SA � TOA***
CVLT total learning (80) 60.9 (9.6) 65.9 (4.8) 51.7 (11.1) TOA � YA** SA � TOA***
CVLT List B (16) 8.3 (2.1) 7.4 (2.3) 6.55 (2.5) TOA � YA**
CVLT List B intrusions 0.20 (0.46) 0.18 (0.53) 0.45 (0.60)
CVLT Long Delay Free Recall (16) 13.2 (2.2) 15.0 (0.9) 11.0 (2.2) SA � YA** TOA � YA** SA � TOA***
CVLT Long Delay Free Recall intrusions 0.28 (0.55) 0.29 (0.47) 0.86 (0.91) TOA � YA** SA � TOA*
CVLT recognition rate 97.0% 98.3% 94.1% SA � TOA †

CVLT Long Delay Free Recall semantic cluster ratio (4) 3.1 (0.9) 3.7 (0.6) 2.8 (1.3) SA � TOA*
Flanker congruent (s) 0.7 (0.2) 1.1 (0.5) 1.0 (0.3) SA � YA*** TOA � YA***
Flanker incongruent (s) 0.8 (0.2) 1.2 (0.6) 1.2 (0.3) SA � YA*** TOA � YA***
Flanker congruent error rate 0.0% 0.8% 0.8%
Flanker incongruent error rate 0.0% 0.8% 1.2%
Continuous performance task (s) 0.53 (0.09) 0.65 (0.07) 0.66 (0.10) SA � YA*** TOA � YA***
1-back (d�) 2.6 (0.7) 2.5 (0.8) 2.4 (0.6)
2-back (d�) 1.5 (1.3) 1.5 (1.0) 1.3 (0.9)
Verbal fluency score 31.2 (8.2) 32.8 (7.1) 31.2 (9.5)
Category fluency score 37.3 (8.8) 38.7 (6.3) 36.9 (7.2)
Mini–Mental State Examination (30) 29.2 (0.8) 29.7 (0.5) 28.8 (1.2)

CVLT total learning is the sum of items learned across all encoding trials. Intrusions are words freely recalled that were not on the appropriate list. Recognition rate is the percent correctly recognized. Semantic cluster ratio indicates the degree
to which items within each of the four semantic categories were recalled together. Values in parentheses are the maximum score unless indicated otherwise. s, seconds; d’, sensitivity index computed as Z(proportion of false alarms)-
Z(proportion of hits); SA, Superager; TOA, typical older adult; YA, young adult.

*p � 0.05; **p � 0.01; ***p � 0.001; †p � 0.10

Table 2. Relationship between memory and cortical thickness in anatomical
regions within networks of interest

Regions of interest
Memory performance (CVLT-LD), Pearson
correlation coefficient (r)

Default mode network
R AG 0.20
R SFG 0.60***
R rmPFC 0.45***
L rmPFC 0.41**
L dmPFC 0.29
L aMTG 0.41**

Salience network
R dAI 0.34*
R dlPFC 0.34*
R IFG 0.24
R dAI/FO 0.32
R MCC 0.54***
L MCC 0.38*
L dMI 0.39*
L vMI 0.45***

Control regions
L S1 0.27
L LOcc 0.10
L calc 1 0.30
L calc 2 0.14

Regions that survived Bonferroni corrections ( p � 0.005) include the right SFG, right rmPFC, right MCC, and left
vMI. Regions of interest listed here also appear in Figure 3. R, Right hemisphere; L, left hemisphere.

*p � 0.05; **p � 0.01; ***p � 0.001.
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Discussion
In this study, we extended prior work on
superaging by demonstrating that the
youthful memory abilities of superagers
are associated with preserved neuroana-
tomical integrity in two brain networks
that contribute to memory function.
Based in part on our prior work, we fo-
cused on the default mode network
(Miller et al., 2008; Wang et al., 2010),
well known to be involved in episodic
memory function, and the salience net-
work (Touroutoglou et al., 2012), im-
plicated in attention, executive control,
and motivational and inhibitory pro-
cesses integral to memory encoding and
retrieval. Several regions in these net-
works showed partially preserved neu-
roanatomy in superagers compared to
typical older adults; in fact, in some of
these regions, superagers showed full
preservation, where their thickness
was statistically indistinguishable from
young adults.

Expanding the definition of superagers
and probing their behavioral
characteristics
Harrison et al. (2012), Rogalski et al.
(2013), and Gefen et al. (2014, 2015)
coined the term superagers to refer to
people over age 80 who perform at or
above normative values for individuals in
their 50s and 60s on a verbal long delay
free recall test. We expanded the defini-
tion to a younger group of older adults,
near or just older than typical retirement
age (60 – 80 years old), in part because
prior research has shown an inflection
point in some cognitive abilities including
memory at around age 65 (McDaniel et
al., 2008; Rogalski et al., 2013). Rather
than comparing them to middle-aged
adults, we sought to identify older adults
with youthful memory abilities at or
above normative performance for 18- to
32-year-olds on the CVLT Long Delay
Free Recall test.

We interpret the psychometric data
shown in Table 1 as showing that superag-
ers perform better than typical older

Figure 3. Preserved cortical thickness in some regions within default mode and salience networks supports preserved memory
in elderly adults. The brain maps adjacent to scatter plots show regions where the cortex of superagers is thicker than in typical
older adults ( p � 0.05; depicted as solid white), highlighting the hypothesized networks of interest (salience network in blue;

4

default mode network in pale yellow). Scatterplots in A and B
illustrate the correlation between memory performance in the
entire older adult group (superagers indicated by hollow
points) and adjusted cortical thickness (standardized residuals
after regressing out global mean cortical thickness, plus a con-
stant) in the rostral medial prefrontal (A; r � 0.45, p � 0.01)
and the midcingulate cortex (B; r � 0.55, p � 0.001). The
scatterplot in C shows no such relationship between memory
performance and cortical thickness within one of the sensory
regions used as a control.
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adults in complex attentional and executive control processes
involved in memory encoding and retrieval, in addition to having
slightly superior performance in mnemonic storage processes.
On the CVLT, superagers encode more items on Trial 1 and
across all five trials than typical older adults, indicating superior
auditory–verbal working memory, complex attention, and con-
trolled memory encoding during the learning phase. In addition,
a higher semantic clustering score indicates that executive control
strategies taking advantage of the semantic relationships among
these words are used to a greater degree in superagers than in
typical older adults. In fact, superagers demonstrate slightly

higher scores than young adults, suggest-
ing that they may rely on such controlled
encoding processes to a greater degree
than young adults. While typical older
adults make more intrusion errors than
young adults, superagers do not, indicat-
ing better source memory and inhibitory
control processes. The trend toward supe-
rior recognition discriminability scores in
superagers relative to typical older adults
may be an indication that mnemonic stor-
age processes are more efficient, but this
recognition memory test is likely not sen-
sitive enough to detect differences in tem-
porolimbic memory storage processes.
These behavioral characteristics of super-
agers support our predictions that their
superior memory likely relates to both
memory storage processes subserved by
temporolimbic episodic memory cir-
cuitry and attentional/executive encoding
and retrieval processes subserved in part
by the salience network. We have made

complementary observations regarding the neuroanatomy of
deficits in memory processes in patients with AD (Wolk
et al., 2011), but to our knowledge these process-network hy-
potheses have not been investigated in older adults with superior
memory.

Neural network integrity as a neurobiological substrate
for superaging
We found support for our hypothesis regarding the structural
integrity of the default mode and salience networks, with super-
agers showing much less atrophy than typical older adults in key

Figure 4. Preserved hippocampal volume—a key node in the default mode network— correlates with preserved memory in elderly adults. A, Larger total hippocampal volume (sum of left and
right hemispheres divided by total intracranial volume; as depicted, multiplied by a constant) is correlated with better episodic memory performance in the entire group of older adults (superagers
indicated by hollow points). B, Parasagittal T1-weighted MRI scans at the level of the long axis of the hippocampus illustrate the effect shown in the scatterplot by showing the individuals with the
largest (green) and smallest (red) hippocampal volume within the entire older adult sample. The individual with the largest hippocampal volume (green) is an 81-year-old male, has 20 years of
education, and was able to freely recall 15 of the 16 words on the CVLT after the long delay. The individual with the smallest hippocampal volume (red) is a 74-year-old male, has 16 years of education,
and was able to freely recall 9 of the 16 words on the CVLT after the long delay.

Figure 5. Superaging signature. The figure shows key nodes of the salience network (blue) and default mode network (yellow)
where superagers and young adults are indistinguishable in cortical thickness. Preserved thickness in these regions is what
distinguishes superagers from typical older adults.
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nodes of these networks, which we refer to as the “superaging
signature” (Fig. 5). Remarkably, this group of superagers exhib-
ited full preservation of cortical thickness in several of these re-
gions. Prior studies on the cortical neuroanatomy of superagers
has called attention to the preservation of thickness of part of the
cingulate cortex—a nearly identical anterior midcingulate region
as we observed here (Harrison et al., 2012; Rogalski et al., 2013;
Gefen et al., 2015). The comparison of superagers to typical older
adults shown in Figure 1d of Harrison et al. (2012) demonstrates
preserved thickness in some of the other regions we found, in-
cluding rostral medial PFC, anterior insula, superior frontal
gyrus, and angular gyrus.

Relationship of cortical thickness within superaging signature
to preserved memory
Within the superaging signature, eight regions—the superior
frontal gyrus, MCC, rmPFC, ventral midinsula, anterior middle
temporal gyrus, dorsolateral PFC, dorsal anterior insula, and hip-
pocampus—predict CVLT delayed free recall memory perfor-
mance in the entire group of older adults. Prior work on
superaging has reported relationships between global cortical
volume and memory (Harrison et al., 2012) and between anterior
midcingulate cortical thickness and memory (Gefen et al., 2015).

Our findings reiterate the importance for memory function
of the integrity of regions typically considered to fall within
the default mode network, including structures well known to
be critical for memory such as the hippocampus. While the
integrity of the hippocampus in aging is often viewed as an
important factor determining memory abilities, its contribu-
tion to “youthful” memory function in older adults has not
received previous attention. Prior studies on superaging have
not reported on the hippocampus. Here, we found that super-
agers had fully preserved hippocampal volume, while typical
older adults exhibited smaller volumes, as is commonly seen in
older individuals. We also examined entorhinal, perirhinal,
and parahippocampal cortical thickness and found that these
were not preserved in superaging, nor were they correlated
with memory in the entire older adult sample (data not
shown). Other areas within the default mode network that
subserve youthful memory performance include the rostral
medial PFC, SFG, and anterior MTG. The mPFC has been
observed as activated when people make responses that indi-
cate a “feeling of knowing,” or metacognitive experience of
awareness of memory (Schnyer et al., 2004; Elman et al.,
2012). The SFG contributes to generative, organizational pro-
cessing during encoding (Fletcher et al., 1998; Wagner, 1999)
as well as retrieval-related cue specification and generation of
search strategies, along with manipulation and monitoring of
search results. The anterior MTG is involved in semantic pro-
cessing that enables deep encoding and interacts with ventro-
lateral PFC to enable semantic strategies for organizing
material during encoding and retrieval (Martin and Chao,
2001; Simons and Spiers, 2003), and activity in the anterior
temporal cortex has also been observed during feeling of
knowing judgments (Elman et al., 2012).

In the salience network, cortical thickness in dAI, midinsula,
midcingulate cortex, and dlPFC correlated with memory perfor-
mance. Based on functional neuroimaging studies, dlPFC is in-
volved in both encoding and retrieval, while other salience
network regions, particularly the insula and anterior midcingu-
late cortex, are engaged prominently during retrieval (Wheeler et
al., 1997; Konishi et al., 2000; Wheeler and Buckner, 2003), par-
ticularly effortful forms of retrieval such as free recall. For exam-

ple, in an fMRI study of older adults, Dhanjal and Wise (2014)
demonstrate robust activation during free recall in the inferior
frontal gyrus, anterior temporal cortex, anterior insula, and an-
terior midcingulate gyrus in a region overlapping with that pres-
ently reported (Dhanjal and Wise, 2014; Figs. 2A, 4C). Literature
on cognitive control calls attention to the ubiquitous activation
of these regions (Nelson et al., 2010) during the maintenance of
set and monitoring of performance (Niendam et al., 2012; Power
and Petersen, 2013), with slightly more dorsal frontoparietal re-
gions being more engaged by task set selection and initiation
(Power and Petersen, 2013). The anterior midcingulate cortex
lies at the intersection of the dorsal and ventral salience subsys-
tems (Touroutoglou et al., 2012) and is not only involved in
cognitive control, but also correlated with affective experience
(Touroutoglou et al., 2012; Lindquist et al., 2016; Raz et al., 2016)
and, in particular, the affective/autonomic components of moti-
vated task performance (Parvizi et al., 2013). This part of the
cingulate cortex has also been conceptualized as estimating the
“cost” associated with allocating control to a given task (Shenhav
et al., 2013; Inzlicht et al., 2015). Thus, older adults with pre-
served anterior midcingulate cortical neuroanatomy may be par-
ticularly well positioned to generate and manage an affective
response appropriate to an imminent challenge and allocate cog-
nitive control resources accordingly, which may support youth-
ful memory function.

Future directions
One question underlying superaging is whether elite perfor-
mance reflects a high baseline as opposed to or in conjunction
with resilience against age-related decline; barring longitudinal
assessment, it is impossible to know if these elderly adults were
also top performers in their youth (Weintraub et al., 1994).
Future epidemiological studies are also needed to estimate the
prevalence and demographic characteristics in the general popu-
lation. Although we have now replicated the observation that
preserved structure of the MCC is important in superaging, fu-
ture studies should attempt to replicate our other observations
(e.g., hippocampal volume) in independent samples. Although
high educational attainment has been shown to be a predictor of
successful cognitive aging, education level does not differ be-
tween our superagers and typical older adults in this or previous
studies. Future research should focus on identifying factors that
play a role in preserved cognition, a number of which are already
under investigation, such as exercise, diet, social activities, and
genetic factors (Barnes et al., 2007; Habib et al., 2007; Yaffe et al.,
2009; Josefsson et al., 2012).

Notes
Supplemental material for this article is available at http://dickersonlab.nmr.
mgh.harvard.edu/Sun_SuperAging_Supplementary_Materials.pdf. The fig-
ure shows that superagers exhibit less cortical atrophy than typical older
adults compared to young adults. This material has not been peer reviewed.
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