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Human neuroimaging research has transitioned from mapping local effects to developing predictive models
of mental events that integrate information distributed across multiple brain systems. Here we review work
demonstrating how multivariate predictive models have been utilized to provide quantitative, falsifiable
predictions; establish mappings between brain and mind with larger effects than traditional approaches;
and help explain how the brain represents mental constructs and processes. Although there is increasing
progress toward the first two of these goals, models are only beginning to address the latter objective. By
explicitly identifying gaps in knowledge, research programs can move deliberately and programmatically
toward the goal of identifying brain representations underlying mental states and processes.
Introduction
In recent years, human neuroimaging research has undergone a

paradigmshift frombrainmapping todeveloping integrated,multi-

variate brainmodels ofmental events (seeAppendix for definitions

of key terms). Traditional brain mapping approaches analyze

brain-mind associations within isolated brain regions or voxels,

or a series of them tested one at a time. A local brain response is

treated as the outcome to be explained by statistical models,

and effects in local regions are aggregated into maps. Brain

models reverse thisequation: sensoryexperiences,mentalevents,

and behavior are the outcomes to be explained. Amodel specifies

how to combine brain measurements to yield a prediction about

the identity or intensity of amental process (Figure1). For example,

a model might predict (or decode) the category of the objects a

person is viewing (Haxby et al., 2001; Issa et al., 2013), which ac-

tion a person is about to perform (Haynes et al., 2007; Soon

et al., 2008), or the intensity of pain experience (Marquand et al.,

2010; Wager et al., 2013). Thus, brain maps and models have

fundamentally different goals: whereas maps describe local en-

codingof information,modelsattempt tospecify thepartsofaneu-

ral system and how their joint activity predicts mind and behavior.

Some models are simple, associating activity in a single brain

regionwith an outcome. But increasingly, brainmodels aremulti-

variate: they explain outcomes as patterns of brain activity and/or

structure across large numbers of brain features, often distrib-

uted across anatomical regions and systems, or even types of

measurements (fMRI activity, connectivity, structure, and/or

neurochemistry). Multivariate models have been developed for

diverse types of mental events and states—including object

recognition (Haxby et al., 2011), speech content (Formisano

et al., 2008), wakefulness (Tagliazucchi and Laufs, 2014), auto-

nomic responses (Eisenbarth et al., 2016), memory (Harrison

and Tong, 2009; Polyn et al., 2005), decision making (Hampton
and O’Doherty, 2007; Kahnt et al., 2011), semantic concepts

(Huth et al., 2016; Mitchell et al., 2008), cognitive tasks (Poldrack

et al., 2009), attention (Esterman et al., 2009; Rosenberg et al.,

2016), pain (Marquand et al., 2010; Wager et al., 2013), prosody

(Ethofer et al., 2009), emotion (Kragel and LaBar, 2015; Saarim€aki

et al., 2016; Wager et al., 2015), empathy (Krishnan et al., 2016),

and the content of dreams (Horikawa et al., 2013). They have also

been applied to diverse neurological and mental disorders (for

reviews, see Arbabshirani et al., 2017; Woo et al., 2017a).

In this review, we discuss the theoretical underpinnings that

make multivariate brain models an informative and powerful

approach, and provide a brief history of the expanding set of

modeling tools and approaches in the field. We also explore

the promise and challenges of a specific type of model, brain

‘‘signatures’’ or ‘‘neuromarkers’’, which identify brain patterns

that predict mental and behavioral outcomes across individuals

(Gabrieli et al., 2015). In the application areas listed above and

beyond, the reversal of predictors and outcomes affords several

advantages: (1) a better match to how mental and behavioral in-

formation is encoded in neurons; (2) larger effect sizes in brain-

outcome associations than standard local region-based ap-

proaches; (3) quantitative predictions about outcomes that can

be empirically falsified; (4) models with defined measurement

properties that can, under certain use cases, be tested and vali-

dated across studies and labs; and (5) a path toward validating

mental constructs and understanding how the brain carves the

mind at its joints—i.e., which psychological distinctions are par-

alleled by strong neurological ones (Lenartowicz et al., 2010).

Finally, we discuss the difficult issues surrounding mental

constructs and their validation, and how predictive brain models

can help redefine the way we categorize and understand the

mind. The progression from brain maps to models of mental

states provides a strong foundation for empirical and theoretical
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Figure 1. Brain Maps versus Brain Models
(A) The objective of conventional brain mapping is
to identify which brain regions are reliably more
active as a function of different kinds of stimulation
or manipulations of mental state (in addition to
error, E). The classical outcome of brain mapping
study is a parametric map indicating the extent to
which every brain measure (voxel) is associated
with a given mental state. The objective of devel-
oping a multivariate brain model is to account for,
and thus predict, an individual person’s mental
state or behavior (outcomes) based on their brain
activity.
(B) Brain maps are displayed for comparisons
of brain responses between emotional faces and
shapes, reward and punishment (Barch et al.,
2013), and painful pressure applied to the thumb
and rest (study 5 from Kragel et al., 2018).
(C) Brain models can vary in complexity, ranging
from the average activity of individual brain regions
(e.g., a bilateral amygdala mask [left]; Swartz et al.,
2015) to more complex patterns of brain activity
optimized through statistical learning procedures
(e.g., the top 1% of voxels that predict crowd-
funding choices [center] [Genevsky et al., 2017] or
the Neurological Pain Signature [right] [Wager
et al., 2013]).
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development. But it also raises some fundamental issues about

how researchers define and evaluate mental constructs, and

what it means to identify a brain representation that underlies

them. As the science of multivariate brain models develops,

the field must grapple with these questions. Scientists are

already engaged in the demanding work of iteratively identifying

potential mental constructs, developing neural measurement

models for them, and validating, refining, and redefining those

constructs based on empirical data. An explicit formalization of

this process can identify gaps in current research and accelerate

progress toward a fundamental goal of cognitive neuroscience

and related fields: establishing mappings between mind

and brain.

Theoretical Assumptions about Neural Representation
Brain mapping in neuroimaging emerged from a convention of

thinking ofmental processes as beingmodular and implemented

in isolated, local brain regions. This view is grounded in long-

standing assumptions in philosophy of mind (Lindquist and Bar-

rett, 2012) and studies showing that lesions of distinct cortical

areas produce deficits in speech production, language compre-

hension, perception, and action (reviewed in Banich, 2004; Brett

et al., 2002). This work supported the notion that the brain can be

thought of as a collection of functional modules—independent,

separable processing units that access one another’s inputs

and outputs, but not intermediate processes (Fodor, 1985;

Marr, 1977). Though challenged on theoretical grounds (e.g.,

Barrett, 2009a; Jonas and Kording, 2017; Sarter et al., 1996),
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this basic assumption was adopted

in early neuroimaging studies, and it

became popular to analyze brain-mind

associations by analyzing each brain

voxel independently (Brett et al., 2002;

Logothetis, 2008).
In contrast, multivariate predictive models emerged from

theories grounded in neural population coding and distributed

representation. Neurophysiological studies have established

that information about mind and behavior is encoded in the ac-

tivity of intermixed populations of neurons. Many studies identify

information encoded in single neurons—but often, activity in

even the most stimulus- or task-predictive individual neurons

contains too little information to accurately predict behavior.

A literature on population coding demonstrates that behavior

can often be more accurately predicted by joint activity across

a population of cells (Averbeck et al., 2006; Pouget et al.,

2000), including motor control (Georgopoulos et al., 1986), face

perception and identification (Chang and Tsao, 2017; Young

and Yamane, 1992), object recognition (Hung et al., 2005; Kiani

et al., 2007), control of eye movements (Lee et al., 1988), odor

perception (Iurilli and Datta, 2017), numerosity (Tudusciuc and

Nieder, 2007), and more.

Population-coding studies have shown that most cells are not

strongly selective for a single stimulus or action category, such

as object type (Kiani et al., 2007) or saccade direction (Sparks

et al., 1990), but rather respond to complex combinations of

categories (Rigotti et al., 2013). Firing rates for non-preferred

categories are stable and reproducible, and including them in

predictive (i.e., ‘‘decoding’’) models results in stronger classifica-

tion performance thanmodels containing only strongly category-

selective neurons (Kiani et al., 2007). Further, they provide strong

classification performance after removing strongly responsive

neurons from predictive models (Rigotti et al., 2013; Tudusciuc
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and Nieder, 2007). Deactivation of neurons strongly responsive

to one category (e.g., one saccade direction) does not eliminate

that category of responses, but rather results in predictable

shifts in behavior consistent with population coding (Lee et al.,

1988). And in addition to variation in the mean activity in popula-

tions of cells, co-variation between neurons is also important

(Ni et al., 2018). These findings indicate that when it comes to

information coding, the whole is often greater than the sum of

its parts.

Population codes have several adaptive benefits that may

have driven their evolution, including robustness, noise filtering,

and the ability to encode high-dimensional, nonlinear represen-

tations that can be used flexibly (Pouget et al., 2000). Distributed

representation permits combinatorial coding (Osborne et al.,

2008), providing the capacity to represent a great deal of infor-

mation with limited neural ‘‘real estate.’’ Neurons are elements

that can be combined into a nearly infinite number of system

states, exponentially increasing the network’s coding capacity

(Rolls, 2007). Such generative systems are pervasive. For

example, 26 Latin letters are the basis for all the words in the

English language. By contrast, the Chinese Zhonghua Zihai char-

acter dictionary includes over 85,000 logograms, each repre-

senting a single word or concept (Russell and Cohn, 2012).

These advantages have inspired artificial neural networks that

capitalize on these principles (O’Reilly et al., 2012; Rumelhart

et al., 1986). Neurons in these models encode features of input

objects (e.g., images, text, etc.) in a highly distributed, ‘‘many-

to-many’’ fashion. Each neuron representsmany object features,

and a representation of an object feature is distributed across

many neurons, providing a rich way of representing similarities

and associations across objects. Neurons in deep network

layers encode complex combinations of features, which has

proven critical for the improved predictive accuracy of deep

learning models relative to other models (Krizhevsky et al.,

2012; LeCun andBengio, 1995; LeCun et al., 2015). Suchmodels

can also be used decode, and create, never-before-seen objects

(Gregor et al., 2015; Miyawaki et al., 2008; Nguyen et al., 2016).

Multivariate modeling of how activity spanning many brain

voxels jointly encodes behavioral outcomes in human neuroi-

maging is an extension of population-coding concepts in cellular

neuroscience. Because human neuroimaging provides an indi-

rect measure of neural activity that is more consistent with local

field potentials and bulk calcium imaging than the activity of sin-

gle neurons (Logothetis et al., 2001; Nir et al., 2007; Schulz et al.,

2012), the activity in any individual voxel is not viewed as indica-

tive of any specific computation or process, but as part of a

distributed representation that can be dynamically transformed

during cognition to accomplish different functional tasks. Rather

than attempting to localize independent functional modules, as

is done in conventional univariate approaches, multivariate

methods characterize relationships between distributed pat-

terns of activity and categories of mental events and behaviors

(Haynes, 2015; Norman et al., 2006; Poldrack and Farah, 2015).

A Brief History of Multivariate Brain Models
Advances in Multi-voxel Pattern Analysis

Multivariate brain models are a diverse family of models, encom-

passing multiple goals and analytic approaches. One goal is to
accurately predict outcomes (i.e., maximize variance explained

by the model), which is useful for future prediction (prognosis).

But there are other, complementary goals. Models can be de-

signed to (1) generalize to new groups of people, mental states

or behaviors, or testing contexts; (2) discriminate one category

of mental events or behaviors from another; and/or (3) be more

or less easily interpreted in the context of other neuroscientific

data and validated against other findings. Models that are accu-

rate, generalizable, and interpretable provide more than predic-

tions; they provide explanations for the neural bases of mental

events. Models also vary in the assumptions they make about

how mental events are represented in the brain, with different

goals and assumptions indicating different study designs and

analytic methods.

Over the past two decades, the variation in the types ofmodels

employed has grown dramatically, as assumptions about how

the brain represents mental events have changed and some

goals originally thought to be unreachable now seem possible.

Figure 2A shows a timeline of some of the most important devel-

opments, and corresponding choices about model goals and

structure. We group these advances into multiple stages, each

adding a set of techniques to the neuroscientist’s toolbox.

Local Information Coding within Individuals. Early studies were

grounded in the assumption that information is primarily en-

coded in local brain regions, in the activity of functional neuronal

columns and ensembles with a fine spatial scale (i.e., �1 mm or

less, depending on the system; Duong et al., 2001; Fukuda et al.,

2006) and whose precise topography varies across individuals

(Issa et al., 2013). Modeling efforts thus focused on predicting

mental states within individuals in spatially localized regions.

The goal was not to develop a useful overall model of perception

or behavior, but—as in traditional brain mapping—to understand

local brain representation.

Using this approach, several seminal papers showed that

brain activity in early visual cortex could be used to predict the

orientation of line gratings a person was viewing (Kamitani and

Tong, 2005); other work demonstrated that activity patterns

identified in this way could be used as probes of working mem-

ory. For example, models developed to identify the perceived

orientation of line gratings could be used to infer the contents

of working memory in the absence of visual stimulation (Harrison

and Tong, 2009). These studies and seminal work in other

domains (e.g., Hampton and O’Doherty, 2007; Kay et al., 2008;

Kuhl et al., 2011) have helped establish predictive analyses

within local regions of interest as a way of understanding local

representation of mental events. An extension, searchlight

mapping (Kriegeskorte et al., 2006), involves multivariate predic-

tion within local spherical ‘‘searchlights’’ across the brain to

construct brain maps of where information about a mental/

behavioral outcome is encoded, which has become a popular

technique for mapping local brain information content (Haynes

et al., 2007; Peelen et al., 2010; Rissman et al., 2010).

Although these studies illustrated a groundbreaking new

approach, they are limited in some important ways. First,

showing that a local fMRI model predicts an outcome above

chance does not, in itself, license the use of the model as a

‘‘marker,’’ or proxy for a brain representation. Using a brain

model to infer the presence or strength of amental event requires
Neuron 99, July 25, 2018 259



Figure 2. Advances in Multivariate Brain
Modeling
(A) Timeline of methodological developments in
predictive brain modeling. Advances in predicting
behavioral and mental outcomes are influenced
by ideas about local coding, distributed coding,
and generalizability. These ideas fostered com-
plementary tools for analyzing brain data.
(B) Decisions involved in developing multivariate
models of brain activity. Three classes of de-
cisions involve the intended generalizability of a
model (should it work for a single individual, or a
whole population?), the spatial scale of modeling
(should activity within a local searchlight, a single
brain system, or the whole brain be modeled?),
and the complexity of relationships linking brain
and mind (e.g., should a linear or quadratic
function be used to map brain activity to model
outcomes?). The rightmost column depicts multi-
variate brain models that are the result of different
methodological decisions.

Neuron

Review
assuming—or, ideally, showing—that (1) the putative brain

marker is causally related to the mental event, rather than con-

founding processes; (2) the brain marker is sufficient to capture

the brain representation of the mental event and detect it with

high sensitivity; and (3) the brain marker is specific to the mental

event of interest (Davis et al., 2017; Woo et al., 2017a). The brain

marker has high positive predictive value for the mental event—

an indicator that activation of the brain marker implies that the

mental event occurred—if and only if the latter two criteria are

met. These criteria are particularly difficult to meet in single-

subject, local decoding models.

Another limitation is that because single-subject decoding

identifies a different model (e.g., different pattern of parameter

estimates based on the observed fMRI activation) for each indi-

vidual participant, it allows a great deal of flexibility in capturing

artifacts and confounding processes not related to the mental

process being studied (Davis and Poldrack, 2013; Gilron et al.,

2017; Todd et al., 2013). Potential confounds (e.g., time-varying

effects such as learning, habituation, and fatigue) are not typi-

cally modeled in local decoding studies, and avoiding systematic

biases requires specialized experimental designs (e.g., within-

person counterbalancing and stratification on confounds) that

may be impractical in many cases. Individualized models also

cannot be tested for accuracy, generalizability, or susceptibility

to confounds in new studies, without bringing the same individ-

uals back for re-testing. That is, it is possible to replicate the

finding that premotor activity predicts future choices (Haynes

et al., 2007; Soon et al., 2008), but not possible to test whether

the precise models used for each individual represented in-

tended actions or, rather, another correlated process unrelated

to willed action.

Finally, local prediction relies heavily on the assumption that

information is contained predominantly in fine-grained, local pat-
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terns. If this is not the case, then pre-

dictive models will perform poorly if

restricted to focal brain regions. And the

lower the decoding accuracy (or related

measures of effect size; Box 1), the
more likely it is that the brain measure is too noisy to serve as

a proxy measure, the brain area targeted may play only a minor

role in representing the mental process, or the association

between brain and mental/behavioral outcome is artifactual.

Unfortunately, it is not easy to know how accurate local search-

light models are in much of the published literature because post

hoc effect sizes in searchlight maps are optimistically biased if

significant regions are selected from amongmany regions tested

(Reddan et al., 2017).

Thus, the development of brain measures as indicators for

mental constructs like perception, working memory, pain, etc.

is an important goal, but it requires inferences that are difficult

to establish in single studies, let alone single participants.

Several developments in the field address different aspects of

these limitations, as we describe below.

From Local to Brain-wide Decoding. Rather than focusing on

individual regions, other studies started from the assumption

that information is encoded in distributed brain systems,

and that characterizing complex behaviors may require models

that capture patterns of activity across these systems. This

assumption leads to models that make predictions based on

joint patterns of activity and/or connectivity across many voxels

(currently up to hundreds of thousands) spanning the brain.

This approach was slower to develop, in part due to the

potential for overfitting when there are manymore model param-

eters (e.g., voxels) than observations, producing models that do

not generalize well (for more explanation in the neuroimaging

context, see Pereira et al., 2009). However, machine learning

techniques that regularize or reduce the complexity of predictive

models with large numbers of features help to overcome

this challenge and make whole-brain models viable (Gramfort

et al., 2013; Grosenick et al., 2013; Michel et al., 2011). Studies

emerged using brain-wide patterns to decode the contents of



Box 1. Effect Size as a Function of Spatial Scale

Measures of effect size (e.g., Cohen’s d, Pearson’s r, or Glass’ D) indicate the strength of an observed relationship independent of

sample size. The goal of predictive modeling is to develop models of brain activity that can detect specific mental states with large

effect sizes.

Although many neuroimaging studies report effect sizes, most are not appropriately designed to estimate them in an unbiased

manner (Reddan et al., 2017). Most studies report effects for a small subset of the most significant voxels from mass-univariate

tests, which are not representative of future performance due to a voxel selection bias that makes them over-optimistic (Varma

and Simon, 2006). This bias can be avoided by nested cross-validation and prospective, out-of-sample testing.

Multivariate brain models that accumulate information from many different neural sources increase sensitivity and effect sizes

when the brain information of interest is distributed across regions. Recent studies examining brain representations of negative

emotion (Chang et al., 2015) and vicarious pain (Krishnan et al., 2016) have shown that predictivemodels utilizing information span-

ning the entire brain perform better than models based on local patterns of activity within spherical ‘‘searchlights’’ (Kriegeskorte

et al., 2006). These results suggest that complex emotional states are best characterized in terms of global brain states, as

opposed to activity within localized neural substrates (Barrett, 2017).

Within the extremes of local searchlights and whole-brain models, predictive models can decode information at multiple different

spatial scales. Figure 3 depicts how information is encoded across multiple brain systems, by plotting the performance of pain-

predictive models developed using brain activity from multiple resting-state networks (i.e., uniform random sampling from the

entire brain) versus models that sample from a single resting-state network and the most predictive searchlight from the entire

brain. Models using features that span multiple networks (r = 0.544 for the whole-brain models) have larger effect sizes than those

using features from a single network (r = 0.487 for the visual network models), indicating that information about pain experience is

contained in patterns of activity that span multiple brain systems.
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memory (Polyn et al., 2005) and semantic information (Mitchell

et al., 2008), and differentiate among cognitive task types (Pol-

drack et al., 2009). More recent studies have shown that signals

containing information about reward and punishment (Vickery

et al., 2011), working memory (van Ast et al., 2016), semantics

(Huth et al., 2012, 2016), pain (Brodersen et al., 2012; Marquand

et al., 2010), sustained attention (Rosenberg et al., 2016), and

other functions are not confined to single brain regions or sys-

tems, but are widely distributed across brain regions. A new

direction is direct comparisons of models that operate at

different spatial scales, permitting inferences about where and

how broadly mental/behavioral information is encoded (Swisher

et al., 2010). Early model comparison studies suggest that infor-

mation about at least some classes of mental events is indeed

distributed across regions and systems (e.g., Chang et al.,

2015; Krishnan et al., 2016; Box 1).

Broadening the spatial scale of a model does not, in itself,

address limitations inherent in single-subject models, including

(1) susceptibility to confounds (especially diffuse neuromodula-

tory effects that are not specific to the target mental state),

(2) poor interpretability of the model parameters (i.e., patterns

within and across voxels), and (3) inability to test the generaliz-

ability and specificity of already-trained models across partici-

pants, contexts, and types of mental events. In addition, despite

regularization and related modeling techniques, estimates of

these parameters are generally noisier than standard univariate

maps and their interpretation is more complex. For example,

brain features important in the model may capture and control

for sources of noise in the data, rather than being directly related

to mental events (Haufe et al., 2014).

The interpretability of model parameters is particularly compli-

cated when nonlinear mappings, such as those implemented by

commonly used radial basis function support vector machines
and deep neural nets, are used to predict mental states from

brain activity. These approaches create mappings between pa-

rameters (generally, brain features) and outcomes that are com-

plex and nonmonotonic (Kamitani and Tong, 2005; Norman

et al., 2006). A classic example of this problem involves decoding

object identity from retinal activity. A complex non-linear model

can use retinal activity to predict the semantic category of the

object one is viewing, even though individual neurons in the

retina do not respond based on semantics. The representation

of categories is encoded in the model, but not directly in the ac-

tivity of retinal cells. A linear model will fail to predict semantic

categories—an advantage in this case—because it relies only

on information encoded in the system in a linear fashion. Despite

this challenge facing nonlinear models, seminal studies using

deep nets to model processing in the ventral visual pathway

have shown a striking convergence with biological data (DiCarlo

et al., 2012; Horikawa and Kamitani, 2017). More generally, is-

sues related to interpretability can be partially addressed by as-

sessing their relationship with univariate encoding weights

(Haufe et al., 2014; Jimura and Poldrack, 2012; Woo et al.,

2017b) and evaluating the reproducibility of model weights

across individuals (Strother et al., 2002; Varoquaux et al., 2017).

FromModeling Individuals to Populations. Given the limitations

raised above, researchers have increasingly focused on identi-

fying models that generalize across individuals. Models that pre-

dict outcomes in a group of subjects are constrained to have

identical model parameters and estimates across individuals,

reducing idiosyncratic artifacts (Todd et al., 2013) and increasing

interpretability. Additionally, model performance can be tested

on out-of-sample individuals, yielding estimates of person-level

performance as is the case for diagnostic tests used in medicine.

This approach assumes that there is useful information

contained in patterns of brain activity that are consistent across
Neuron 99, July 25, 2018 261



Figure 3. The Effect of Spatial Scale on Model Performance
The plot shows the average cross-validated performance (Pearson’s r, aver-
aged over 500 iterations) of models designed to predict pain reports following
thermal stimulation using a 2-fold subject-independent cross-validation (data
from study 2 of Wager et al., 2013; n = 33). The x axis denotes the number of
voxels used in each model, which were sampled randomly from a uniform
distribution spanning the entire brain (black) or individual resting-state
networks (colored lines; inset render shows each network from a medial view).
Solid curves display parametric fits of the form A - Be-v/C, where v is the
number of voxels, A is the performance of the whole-brain model, B is the
performance of a single voxel, andC determines the rate of increase. Sampling
voxels from the whole brain produces the most predictive models, compared
to sampling within a single resting-state network or searchlight, although only
�1,000 randomly sampled voxels are needed to achieve this performance.

Neuron

Review
individuals—meso-scale and systems-level activity. In spite of

initial assumptions to the contrary, cross-subject decoding

proved effective in a number of different areas, including identi-

fication of attentional states (Mourão-Miranda et al., 2005), de-

tecting the semantic category of perceived objects (Shinkareva

et al., 2008), and diagnosis of dementia (Davatzikos et al.,

2009), depression (Drysdale et al., 2017), chronic pain (Baliki

et al., 2012; Mansour et al., 2016; Tétreault et al., 2016), and

other clinical outcomes (for reviews, see Gabrieli et al., 2015;

Woo et al., 2017a). These studies shaped the landscape of pre-

dictive models by establishing population-level models that

generalize across participants.

One potential disadvantage is that population-level models

are not always as predictive as individualized models (e.g., see

direct comparisons in Clithero et al., 2011; Haxby et al., 2011;

Lindquist et al., 2017; Shinkareva et al., 2008). One important

limitation is inter-subject variability in structural and functional

anatomy that reduces generalizability across subjects (Cox

and Savoy, 2003). Statistical theory shows that the relative costs

of between-person relative to within-person prediction depend

on the ratio of between-person variance (individual differences)

to within-person variance (individual measurement error; Lind-

quist et al., 2017). Larger individual differences and the ability

to collect large amounts of data per person shift the advantage

toward within-person models. However, as the amount of data

that can be collected on one individual is often limited, as in stan-

dard brief ‘‘localizer’’ tasks, in some cases between-person

models perform nearly as well as within-person models (Lind-

quist et al., 2017) or are actually more accurate (Chang et al.,

2015). Several new models, including hyperalignment (Haxby
262 Neuron 99, July 25, 2018
et al., 2011) and other methods that align functional (rather

than anatomical) regions across participants, can dramatically

reduce inter-subject variability in functional anatomy, increasing

the accuracy and specificity of population-level models.

Several other important limitations remain, including limita-

tions in interpretability (Haufe et al., 2014), the potential for con-

founds, and questions about whether a given model generalizes

to different contexts (i.e., predicts related outcomes in super-

ficially different settings). However, these limitations can be

partially overcome with considered choices of training and

testing data and model structure, as we describe below.

Generalization across Contexts. A major challenge with all

types of predictive models is ensuring that they reflect a partic-

ular target mental process (e.g., pain, attention, etc.). In some

cases, the model may track correlated superficial variables,

and in others, it may track the mental process in only one

context. For example, is a brain classifier that predicts when

individuals are viewing angry versus fearful faces picking up on

the concepts of ‘‘anger’’ and ‘‘fear’’ in general, or rather some

particular aspects of the faces and eye-movement patterns

during viewing? An important direction in multivariate modeling

is to explicitly train models that are robust to variations of the

experimental context—e.g., angry versus neutral pictures,

sounds, memories, etc. Systematically generalizing over exper-

imental contexts makes models more likely to reflect a targeted

mental category, rather than correlated sensorimotor and cogni-

tive processes.

Several recent studies develop models that generalize across

superficially different exemplars of a mental process. Work on

modeling emotion categories (fear, anger, etc.) has trained pop-

ulation-level models to generalize across music and film clips

(Kragel and LaBar, 2015), short movies and mental imagery

(Saarim€aki et al., 2016), and diverse emotion-induction methods

(Wager et al., 2015). Other studies have predicted emotion and

affective valence in a way that generalizes across visual and gus-

tatory stimuli (Chikazoe et al., 2014); face, voice, and body cues

(Peelen et al., 2010); and across direct perceptions and causal

inferences about context (Skerry and Saxe, 2014).

As with other approaches, there are limitations here as well.

Different manipulations may prove more or less effective at

inducing targeted mental states; for example, video clips are

frequently more robust elicitors of emotions than mental imag-

ery or autobiographical recall (Westermann et al., 1996), and

certain types of experience may be more difficult to manipulate

with certain types of stimuli (Wager et al., 2015). This intro-

duces a confound between category and intensity, which can

be accounted for by (1) approximately matching stimuli from

different categories on intensity and (2) controlling for intensity

during model training. The same principle applies to other po-

tential confounds, and while prior work has accounted for

them in some cases, future modeling work should consider

them carefully. In addition, it is often infeasible to manipulate

more than a few variables in a single study. Combining

contextual variation with population-level modeling can help

by integrating data across multiple studies with more contex-

tual heterogeneity in the combined dataset (e.g., Kragel et al.,

2018). Finally, some mental constructs are hypothesized to

vary as a function of context (e.g., Barrett, 2017; Barrett and
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Satpute, 2017; Barsalou, 2008; Wilson-Mendenhall et al., 2011).

For example, ‘‘anger’’ and ‘‘fear’’ are intrinsically linked to

different action tendencies, and it may be impossible to sepa-

rate emotions from these tendencies.

Brain Signatures: Toward Strong Inference in Relating
Mind to Brain
Though multivariate brain models come in many varieties, a

common goal is to predict mental events and thereby under-

stand the brain representations underlying them. This can

include (1) detecting whether a mental process has been

engaged, (2) inferring the strength or intensity of engagement,

(3) inferences about which mental categories are similar or

distinct in their brain representation, (4) inferring how changes

in context or treatments affect the engagement of a mental pro-

cess and its brain representation, and more.

We argue that a particular class of models—brain signatures—

is especially useful for this purpose. This class of models uses

distributed information within and across brain systems to

make population-level, between-subject predictions about the

strength of engagement of a mental process, ideally across con-

texts, and to distinguish it from other categories of mental events

(see Box 2 for guidelines on developing brain signatures). Such

signatures are effectively brain biomarkers, or neuromarkers

(Gabrieli et al., 2015). In our usage, the terms ‘‘signature’’ and

‘‘biomarker’’ are essentially interchangeable. A brain signature

is not assumed to be unique to a particular mental process

in the way that a handwritten signature is unique to a person.

Its sensitivity, specificity, generalizability, and other measure-

ment properties are empirical matters. Likewise, biomarkers in

medicine may be more or less accurate, more or less specific

to a particular disease, etc. Signatures with desirable properties

should be carried forward and tested more extensively, and

those with poor measurement properties discarded or redefined

(Woo et al., 2017a). By extension, just because model develop-

ment targets one type of mental event, we should not assume

that the targeted event class is the best description of what the

signature measures. For example, ‘‘pain signatures’’ trained to

track pain maymeasure the engagement of attention or negative

affect. Testing alternative psychological descriptions is also an

empirical process, the heart of what we refer to as ‘‘construct

identification’’ below.

In addition, a signature may not be a complete description

of a mental process. It may be useful as an indicator without

capturing relevant brain processes, just as a disease biomarker

need not capture all aspects of disease physiology. Thus, there

is ample room for multiple signatures for the same class of

mental event.

The specific modeling choices involved in constructing

brain signatures—distributed information and population-level

modeling—allow these various types of empirical development

and validation to occur across studies and laboratories, dramat-

ically enhancing the ability to (1) falsify models by making strong

predictions, (2) develop models with desirable measurement

properties, (3) establish reproducibility across studies, (4) use

pre-defined models as targets for interventions, and (5) identify

the psychological constructs that are measured by brain signa-

tures and develop new psychological ontologies.
Falsifying Models

Thinking of brain signatures as measures highlights one of their

main advantages: they provide specific, quantitative predictions

that can be tested and falsified. This enables a cycle of model

formulation and rigorous testing that has been crucial for scien-

tific advancement across fields (Platt, 1964). In physics, it has led

to strong, theory-driven predictions that were empirically tested

only many years later, like Einstein’s prediction based on the

general theory of relativity (Einstein, 1916) that starlight should

bend around the sun as it reaches earth. This prediction was

tested years later by Eddington (Dyson et al., 1920), validating

the theory’s predictive utility.

For example, a ‘‘pain signature’’ should respond whenever

pain is strongly believed to be present, but not otherwise. If it

does not respond to pain, and methodological errors can be

ruled out, then the hypothesis that the signature reflects all types

of pain can be ruled out, paving the way for new refinements.

Alternatively, the signature might reflect only some types of

pain or pain from some sources, leading to new hypotheses

that the brain includes multiple distinct processes that can be

labeled as painful. If the signature responds to events that are

clearly not painful, like aversive images, bitter taste, or breath-

lessness, then the signature can be falsified as being unique to

pain, and the understanding of what it measures can be refined.

Focus on Measurement Properties

Because much of the focus in both brain mapping and multivar-

iate searchlight approaches has been on explaining local brain

representations, relatively little attention has been paid to the

measurement properties of brain signals as defined by signal

detection theory (McNicol, 2005)—e.g., their sensitivity, speci-

ficity, positive predictive value for behavior, and generalizability.

A second advantage of brain signatures is the fact that they

have definable measurement properties that allow models to

be empirically tested in subsequent research.

In addition, a closer match between multivariate patterns and

underlying neural representation naturally leads to better mea-

surement properties. This point is supported by studies of hyper-

acuity, the observation that multivariate models are sensitive to

information coded at spatial resolutions finer than the resolution

of neuroimaging data acquisition (Carlson, 2014; Kamitani and

Tong, 2005; Wardle et al., 2017). It is also supported by observa-

tions ofmultiscale sensitivity, where distributed informationwithin

and across regions provides better prediction than single regions.

These advantages have resulted in larger effect sizes for brain-

wide multivariate compared to local multivariate and univariate

models in direct comparisons in several studies (e.g., Chang

et al., 2015; Krishnan et al., 2016) (Figure 3). Because the models

that best match underlying neural representations are likely to fit

best, model comparisons—univariate versus multivariate, local

region versus distributed network—provide a way to use neuroi-

maging to probe the nature of underlying brain representations.

Reproducibility

The ability to reproduce results across studies and laboratories

is a key part of scientific progress. Findings that cannot be repli-

cated may simply be false positives, or the effects may be too

context-sensitive for cumulative scientific progress and utility

in practical applications. Questions about the reproducibility of

scientific findings have become a major issue across fields
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Box 2. Guidelines for the Development of Multivariate Brain Markers

Although the exact approach depends on the goal of a specific project, some general guidelines for experimental design—outlined

below—apply to many multivariate model-development efforts.

Choice of outcome: outcomes can be either categorical or continuous, and can vary within-person, between-person, or both. One

common approach is binary classification with two categories (e.g., two task conditions, or patients versus controls). These

models can be useful, but they may often yield brain measures that are not specific. ‘‘Greedy’’ classifiers tend to reflect a range

of processes that differ between the two conditions. For example, classifying pain versus no-pain conditions can capture activity

related to arousal and attention as well as pain. Regression models trained on parametric variations across multiple conditions

(e.g., pain intensity ratings) offer a partial solution, and allow for the estimation of dose-response relationships between brain

responses and outcomes.

Choice of experimental conditions and level of analysis: models that capture variation of interest acrossmultiple outcome levels (e.g.,

intensity of affect or cognitive performance) within-person can increase specificity and permit the evaluation of sensitivity across a

dynamic range. This also reduces the potential for floor and ceiling effects. And importantly, training models on within-person

outcomes reducessourcesof noise that canmakepredictionofbetween-persondifferences intractable, includingnuisancevariation

in both outcome and brain measures: for example, (1) scale rating usage (for self-reported assessments) and (2) vascularization,

hematocrit, receptor density, arousal level, and other factors that produce inter-personal variation in brain responses.

Designing for specificity: in addition to target conditions of interest, it is also desirable to include a range of ‘‘foil’’ conditions that are

similar to the outcome of interest (i.e., engage some overlapping processes). For example, when predicting taste aversion, foils

could include other aversive conditions (pain, touch, pictures, and sounds) and other attention-demanding conditions. Including

such foils during model training can increase specificity.

Designing for generalizability: including in training datasets multiple instances of the outcome of interest that vary superficially—

e.g., different subjects, studies, populations, and task variants—can increase the generalizability of the model to a broader range

of cases.

Avoiding bias in evaluating performance: cross-validation can be a valid and reasonable way to estimate the performance of a

classifier in new samples. During cross-validation, one part of the data forms the training set (e.g., some participants, in models

designed to generalize across participants) and the remaining data form the test set for performance evaluation. The procedure

is repeated for several repetitions (‘‘folds’’) until all samples have served as part of the test set. It is useful to stratify holdout

sets on the outcome, keeping training and test sets balanced on outcome values, and balance outcomes on potential confounds

if possible.

Cross-validation is useful, but it can provide over-optimistic estimates when (1) there is dependence among observations

in training and test sets; (2) the intent is to generalize to populations that are not identical to the original one (e.g., different

demographics and sample characteristics); and (3) fitting multiple models on the same dataset, e.g., to optimize parameters or

feature selection. The latter is a form of researcher-induced bias that is often unreported in papers, making it difficult to assess

whether reported results are optimistic or not.

We offer the following recommendations to mitigate dependence-related issues: prediction of time series data should control the

influence of auto-correlation, for instance by using rolling-hvg block cross-validation (Racine, 2000) or leaving out entire runs.

Ideally, prediction should be performed across participants if possible, depending on study goals (e.g., 5-fold cross-validation,

leaving out all images collected from subjects in the test set). Dependence across participants can be related to cohort effects

(time of day, experimenter, or time of year), family/twin structure, and other factors. If dependencies exist between participants

(e.g., dyads or twin samples), those should be part of the same holdout sets. Dependence across participants can also be caused

by mean-centering, Z scoring, or removing covariates estimated on the full sample; caution should be exercised when applying

these types of transformations.

Permutation testing: permuting the order of outcome labels can be used to test for bias and statistical significance of the overall

model. In the absence of bias, the permuted distribution should be centered on chance. For such tests, assessing root-mean-

squared error is desirable, as correlations between predictions and outcomes can be negatively biased and accuracy is a coarse

(imprecise) metric with small samples.

Independent holdout sets: to guard against over-optimism, performance should further be evaluated on a completely independent

holdout test set, which should be tested only once to assess the final performance. All training, feature selection, and tweaking

of machine-learning parameters should be done in one part of the data, and then tested only once in a completely novel, unseen

dataset.

(Continued on next page)
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Box 2. Continued

Prospective testing: given the early stages of brain patterns as biomarkers or diagnostic patterns, it will be crucial to keep testing

and externally validating existing markers on new and independent datasets (in the sense of both convergent and discriminant

validity) and to test the effects of different types of experimental manipulations and other factors. Prospective application requires

creating a method (e.g., software) for applying the model to a new individual case and obtaining a model prediction, without

reference to any normative sample or outcome information. We encourage the creation and sharing of suchmethods to encourage

prospective testing.
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(Munafò et al., 2017). But establishing reproducible findings

has been particularly problematic in fields that involve massive

numbers of tests, as in neuroimaging and genetics. It is

also problematic when a large number of context variables

may change how a process works, as in translational neuro-

science (Begley and Ioannidis, 2015) and some areas of

psychology (Doyen et al., 2012; Yong, 2012). Neuroimaging-

based mapping of mind to brain lies at the intersection of these

danger zones.

Reproducibility is limited in standard voxel-wise maps by a

combination of noisy voxel-level measurements and themassive

number of tests involved. The more stringent the multiple com-

parison threshold applied, the less likely that studies with the

same true underlying neural activity will yield the same re-

sults—in effect, low statistical power can ensure that each study

identifies a tiny, and often different, part of the true underlying

pattern (e.g., Yarkoni, 2009). By contrast, signature-based ap-

proaches integrate brain information into a single optimized pre-

diction and test predictions on new, independent individuals.

This avoids the need for multiple comparisons and provides un-

biased estimates of effect size (Reddan et al., 2017) when testing

how experimental interventions affect pattern expression.

Pooling information over multiple brain regions can yield

measures with much larger effect sizes. Whereas local effect

sizes are limited (usually ‘‘moderate’’ effects around Cohen’s

d = 0.5; Poldrack et al., 2017), brain signatures often demon-

strate large effect sizes when evaluated in independent studies.

For example, a pain-predictive model called the Neurologic

Pain Signature (NPS; Wager et al., 2013) yields effect

sizes ranging from d = 1.2 to 3.50 for high versus low pain

(Krishnan et al., 2016; Wager et al., 2013). In a recent analysis

of n = 603 participants across 20 studies from different sites

worldwide (Zunhammer et al., 2018), the NPS response is

greater for pain versus rest in 95.4% of participants, with an ef-

fect size of Hedges’ g = 2.30, 95%CI [1.92, 2.69] across studies.

The Picture-InducedNegative Emotion Signature (PINES; Chang

et al., 2015) differentiated emotionally negative from neutral im-

ages with an effect size of d = 4.69. The Vicarious Pain Signature

(VPS; Krishnan et al., 2016) yielded effect sizes ranging from d =

1.63 to 1.75 for high versus low observed pain (Krishnan et al.,

2016; López-Solà et al., 2017a).

These signatures have been evaluated in multiple studies,

which have tested their properties in different ways. The NPS’s

responsiveness to pain has been replicated in 14 independent

published study cohorts and one large-scale analysis (Zunham-

mer et al., 2018), which have begun to characterize its profile of

sensitivity, specificity, and responses to drug and psychological

interventions (e.g., Lindquist et al., 2017;Woo et al., 2017a). It re-
sponds to some interventions, including the opiate remifentanil

(Wager et al., 2013; Zunhammer et al., 2018), serotonin reuptake

inhibitor citalopram (Ma et al., 2016), and some conditioning par-

adigms that influence pain expectancies (Woo et al., 2017b).

However, it is insensitive to others—including cognitive reap-

praisal (Woo et al., 2015), perceived control (Br€ascher et al.,

2016; Woo et al., 2017b), reward (Becker et al., 2017), and pla-

cebo (Zunhammer et al., 2018)—indicating that it tracks some

of the neurophysiological processes that contribute to pain

self-reports, but not others. The PINES response has been

doubly dissociated from the NPS, indicating that it measures a

distinct set of brain processes (Chang et al., 2015), and has

been used as an outcome for emotion regulation (Gilead et al.,

2016). In the latter study, taking the perspective of a ‘‘tough’’ in-

dividual reduces PINES responses to negative images. The dou-

ble dissociation of NPS responses to somatic pain and VPS to

vicarious pain has been replicated in two additional independent

studies in Krishnan et al. (2016) and López-Solà et al. (2017a).

Novel Targets (and Measures) for Interventions

Given thebettermatch tounderlyingprocessesand the improved

measurement properties, multivariate brain models are prom-

ising targets for causal interventions that directly or indirectly in-

fluence neural activity (e.g., neurostimulation or neurofeedback,

respectively). Population-level brain ‘‘signatures’’ are particularly

useful in evaluating these properties because they enable cross-

study testing and cumulative science. Brain stimulation targeting

multivariate brain models has proven effective, particularly in

shaping memory performance (Ezzyat et al., 2017, 2018; Rose

et al., 2016). Often these techniques are aimed at changing activ-

ity in a single brain region, but their effects might be more wide-

spread and instead alter representations that are distributed

across multiple brain systems (Antal et al., 2008; Bestmann

et al., 2004; Martin et al., 2013). In this case, multivariate markers

can serve as outcome measures by measuring target processes

altered by neurostimulation, and identifying brain mediators of

effects on behavioral or clinical outcomes.

Construct Validation: UnderstandingMental Eventswith
Biologically Grounded Models
At the heart of the enterprise of mapping brain to mind is the defi-

nition of categories of mental events that should map onto brain

processes. Painful heat, cold, and chemical stimuli all involve

different peripheral receptors and populations of neurons; are

the experiences they evoke all examples of a single type of

‘‘pain’’ that is represented similarly in the brain? Or is the cate-

gory ‘‘pain’’ more like the category ‘‘furniture,’’ a convenience

of human thinking and language? Conversely, we use the term

‘‘pain’’ to describe sensations related to both bodily injury and,
Neuron 99, July 25, 2018 265



Box 3. Why Mental Constructs Should Be Grounded in Biology

There is a long history in science of classification, induction (Mill, 1884), and searching for natural kinds (Venn, 2006). There are

several tenets held by proponents of natural kind views that, although not necessarily valid (see, e.g., Searle, 1995, for criticism),

shed light on the importance of biology in understanding mental constructs (adapted from Hacking, 1991):

Independence: it is a fact about nature that there are kinds of things; the differences among things are the work of nature,

whereas the recognition of those things is the act of man

Definability: there are multiple ways to characterize natural kinds (e.g., they share a causal mechanism, or they have similar

properties)

Utility: depending on the purpose, some classifications of objects are more useful than others

Uniqueness: there is a unique best taxonomy in terms of natural kinds that represents nature as it is, although it is not known

to us

Thus, classification can be viewed as a way of organizing objects into useful groupings. Regardless of whether there is truly an

optimal classification scheme, taxonomies can be compared to one another and evaluated based on their utility. Categories

are often formulated in ways that prioritize human communication, rather than advancing understanding or utility in preventing dis-

ease or promoting health. This has historically been the case in medicine and psychology. In medicine, the classification of many

cancers has traditionally been based on the tissue of origin and the degree of differentiation. While this classification has been use-

ful, evolving research has shown that classification based on the presence or absence of specific genetic or molecular abnormal-

ities may be more useful. The development of therapies tailored to these different subtypes has revolutionized cancer treatment.

Our understanding of the mind has not yet made such a transition. Constructs like ‘‘pain’’ and ‘‘emotion’’ have been defined based

on symptoms reported by individuals—self-reports are clustered into categories such as ‘‘chest pain,’’ ‘‘heartache,’’ ‘‘depression,’’

or ‘‘anxiety.’’ ‘‘Memory’’ is onemental construct that has been heavily influenced by neuroscience research; types of ‘‘memory’’ are

increasingly defined based on the biological systems that underlie them (Squire, 2004). However, we do not yet have biologically

grounded ontologies for many other constructs.
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sometimes, romantic rejection. Are their brain representations

distinct, or should the category ‘‘pain’’ be extended to non-

somatic events? The answers to these questions and others

determine how we conceptualize the organization of mind and

brain, and often have practical implications as well. Causing

someone else somatic pain is grounds for legal prosecution;

should causing emotional pain be considered equally harmful

under the law?

All mental categories are ultimately psychological ‘‘con-

structs,’’ conceptual categories organized into taxonomies of

mental events (or alternatively as ontologies; see Poldrack,

2006; Poldrack and Yarkoni, 2016). Mental constructs have

traditionally been ‘‘folk categories’’ (Barrett, 2017) defined based

on similarities in phenomenology and linguistic usage rather

than biological systems. Likewise, disease categories have his-

torically been based on observable symptoms (stomach pain,

shivering, etc.) rather than biological causes (bacterial, viral,

etc.). Re-categorizing diseases based on their underlying biolog-

ical pathology was the critical conceptual shift that separates

modern allopathic medicine from previous systems for diag-

nosing and treating illness. Recent initiatives like the Research

Domain Criterion (RDoC) framework attempt to accomplish a

similar shift in how we think about mental illness (Insel et al.,

2010; Insel, 2014).

Whether the outcomes are disease categories or other mental

constructs, comparing brain models and their patterns of sensi-

tivity and specificity can be used to validate existing mental

constructs and even infer new ones, and thus use the brain to

redefine how we think about the mind (Coltheart, 2013; Box 3).

At present, studies aiming to develop multivariate brain models

implicitly attempt to validate constructs, but do not systemati-
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cally take advantage of construct validation theory. A paradigm

shift toward explicitly evaluating brain models with a formal

construct development approach may lead to a better under-

standing of both the brain and mind.

Construct Validation

Principled approaches to defining and validating constructs can

be found in measurement theory (Cronbach and Meehl, 1955),

but the strategies they use have rarely been applied to neurosci-

ence (for a discussion, see Barrett, 2009b, 2011). A central tenet

is the acknowledgment that constructs are not directly observ-

able; rather, they are inferred from performance onmultiple mea-

sures, called indicators (see, e.g., Strauss and Smith, 2009). For

example, psychometric studies assume that constructs such

as ‘‘general intelligence’’ or ‘‘math ability’’ cannot be directly

observed, but that tests of math and reading can be used as in-

dicators that reflect latent, underlying abilities. If different types

of math tests with different material and presentation formats

correlate together (convergent validity), it might be inferred that

they all measure (load on) the same construct, and one can

develop composite measures that track the latent construct

better than any single indicator. If math tests are relatively

uncorrelated with another coherent set of tests (discriminant val-

idity)—say, of language performance—it might be inferred that

the tests measure ‘‘math ability’’ instead of ‘‘general intelli-

gence,’’ willingness to follow instructions, etc. This approach

uses the similarity structure across indicators to infer the nature

of otherwise unobservable constructs.

Construct validation theory provides principled ways of evalu-

ating multivariate brain models, and a path toward using brain

models to infer which constructs have coherent neurophysiolog-

ical mechanisms. Brain models provide putative measures (i.e.,
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potential indicators) of latent constructs. Just as individual test

items can be pooled together to measure a construct (e.g., sub-

scales of clinical inventories; Henry and Crawford, 2005), brain

activity across voxels and systems can be combined to create

measures related to latent constructs.

For instance, if the same brain measure is activated bymultiple

distinct types of pain, but not bymanipulations of other emotional

or cognitive processes, it displays both convergent and discrimi-

nant validity as a measure of the construct ‘‘pain’’ (Kragel et al.,

2018). Similarly, if a single brainmeasure is correlatedwith perfor-

mance on multiple tasks requiring motor response inhibition

(Wager et al., 2005), it shows some convergent validity as a mea-

sure of the construct ‘‘inhibition.’’ However, it is not clear what the

boundary conditions on the construct are. Thebrain pattern could

be related narrowly to motor inhibition; to a broader construct of

‘‘inhibition’’ that encompasses actions, thoughts, percepts, and

memories; or very broadly to ‘‘cognitive control.’’ The pattern of

convergent anddiscriminant evidence—manipulations themodel

is sensitive to and specific against, respectively—identifies the

construct. In the inhibition example, such an analysis suggests

new tasks that would be informative; for example, inhibition of

memories and other cognitive control tasks that are not obviously

related to motor inhibition. Recognizing that constructs are in-

ferred makes it clear that we need explicit strategies for inferring

what brainmodels actuallymeasure, and conversely refining psy-

chological taxonomies by identifying constructs with convergent

and discriminant validity at the brain level.

Seen in this light, recent studies of generalizability across con-

texts and stimulus modalities begin to establish convergent val-

idity for affective valence (Chikazoe et al., 2014; Kahnt et al.,

2014) and other constructs. Some studies include manipulations

of multiple contexts and multiple putative constructs, establish-

ing convergent and discriminant validity in the same study (Kra-

gel and LaBar, 2015; Saarim€aki et al., 2016). ‘‘Mega-analysis’’ of

person-level image data across studies can extend this process,

allowing systematic sampling of multiple constructs each with

multiple, distinct manipulations in a way that would be difficult

in individual studies. For example, Kragel et al. (2018) analyzed

participant-level contrast images from manipulations of pain,

negative emotion, and cognitive control. Eighteen studies (with

270 participants) were selected to include three distinct methods

for engaging each putative construct (e.g., noxious thermal,

mechanical, and visceral stimulation for the construct ‘‘pain’’),

with two representative studies in each method. Modeling the

similarity structure across constructs, methods, and studies

provided convergent validity for a common representation of

‘‘pain’’ in the anterior midcingulate cortex and ‘‘negative

emotion’’ in the ventromedial prefrontal cortex. The study also

provided evidence that ‘‘cognitive control’’ may not map as

clearly onto one underlying brain representation, but should

rather be subdivided into more fine-grained subtypes.

Another way of validating constructs is external validity, which

involves using a brain model to predict real-world outcomes

(Knutson and Genevsky, 2018). For example, brain responses

in the ventral striatumwhile viewing items predicts later purchas-

ing decisions (Genevsky et al., 2017), ventromedial prefrontal re-

sponses predict long-term behaviors such as attempts to quit

smoking (Chua et al., 2011), and amygdala activity predicts
future anxiety (Swartz et al., 2015). More complex multivariate

patterns predict the progression to chronic pain (Vachon-Press-

eau et al., 2016) and whether prefrontal brain stimulation will be

an effective treatment for depression (Drysdale et al., 2017). In

another series of studies, brain signatures for six different

emotion categories developed in one study (Kragel and LaBar,

2015) were applied to resting-state data in an independent study

and shown to correlate with individual differences in mood and

personality traits (Kragel et al., 2016). Individuals with higher

self-reports of depressive symptoms had greater expression

of a ‘‘sadness’’ signature, whereas anxious individuals showed

greater expression of a ‘‘fear’’ signature.

Other studies have validated constructs using interventions.

Rose et al. (2016) used searchlight mapping to identify regions

in which fMRI pattern activity related to an item in working mem-

ory (i.e., faces, words, or the direction of motion). They found that

persistent activity drops to baseline over time, but transcranial

magnetic stimulation of these regions preferentially reactivated

memoranda-related patterns and enhanced subsequent mem-

ory. Interventions including brain stimulation, neurofeedback,

and pharmacology can help validate brain measures by showing

that they mediate intervention effects on behavior. Directly

manipulating the brain also provides stronger inferences about

causal effects of the brain system(s) measured.

Population-level models can bring these various kinds of vali-

dation together by allowing them to be tested across studies.

The NPS has been tested on data frommany laboratories around

the world, allowing a provisional (and ongoing) identification

of the construct it measures (Figure 4). It tracks pain evoked by

noxious peripheral stimulation of multiple types, including ther-

mal (Br€ascher et al., 2016; Wager et al., 2013), mechanical

(Krishnan et al., 2016), electrical (Krishnan et al., 2016; Ma

et al., 2016), capsaicin-potentiated heat, laser, and visceral stim-

uli, demonstrating convergent validity for evoked pain (see Zun-

hammer et al., 2018, for a meta-analytic assessment). It does not

respond to non-noxious warm stimuli (Wager et al., 2013), threat

cues (Krishnan et al., 2016; Ma et al., 2016; Wager et al., 2013),

social rejection-related stimuli (Wager et al., 2013), observed

pain (Krishnan et al., 2016; López-Solà et al., 2017a), or aversive

images (Chang et al., 2015), demonstrating discriminant validity

against some kinds of related, non-somatic processes. It has

external validity in predicting hypersensitivity in fibromyalgia

patients (López-Solà et al., 2017b), though its generalizability

to other forms of clinical pain remains unknown, and in showing

responses to interventions thought tomodulate pain, such as the

opiate remifentanil (Wager et al., 2013; Zunhammer et al., 2018).

Challenges and Caveats

In addition to challenges facing the interpretation of model pa-

rameters, researchers are often tempted to go beyond the data

and jump to broad conclusions about the biological significance

of models. For instance, if a model predicts behavior, differenti-

ates emotion categories, etc., itmight be assumed to reflect brain

systems that are (1) prewired or biologically determined (i.e.,

occur independently of learning or experience), (2) stable or

invariant to context (new sample, individuals, test conditions,

metabolic state of the body, etc.), and (3) superior to alternative

explanations (that this classification scheme is the ‘‘right’’ or

‘‘best’’ classification). None of these conclusions are logical
Neuron 99, July 25, 2018 267



Figure 4. Examining Predictive Models at
Multiple Spatial Scales
Brain-wide multivariate models can be under-
stood by examining how pattern expression (i.e.,
model output for test data) varies across estab-
lished brain networks and regions.
(A) Brain-wide expression of the Neurologic
Pain Signature (NPS), a signature developed
to predict physical pain intensity (Wager et al.,
2013), and the Vicarious Pain Signature (VPS), a
signature developed to predict observed pain
intensity, in comparisons of high versus low levels
of heat pain (red) and observed pain (purple) (data
from study 1 of Krishnan et al., 2016). These two
signatures are independently affected by these
two manipulations. Adapted from Krishnan et al.
(2016).
(B) Decomposing a distributed pattern into sub-
systems: expression of the NPS and VPS within
seven resting-state networks (Yeo et al., 2011).
Wedge plots of the same dataset depict normal-
ized local pattern expression (using the signature
weights in the local region), with red indicating
positive values and blue negative values. The
darker shaded area indicates the SEM across in-
dividuals. The NPS primarily has positive expres-
sion during pain in the ‘‘ventral attention’’ and
‘‘somatomotor’’ networks during heat pain, and
negative expression in the ‘‘dorsal attention’’
and ‘‘limbic’’ networks. In contrast, the VPS has
more evenly distributed expression across cortical
networks, with a peak in the ‘‘visual network’’
during observed pain.
(C) Meso-scale organization: heat pain and
observed pain also have distinct profiles of local
pattern responses in the diencephalon, based on
an anatomical delineation of thalamic nuclei and

hypothalamus into 17 distinct regions (Krauth et al., 2010; Niemann et al., 2000). NPS expression during pain is positive inmany thalamic nuclei and negative in the
habenula, whereas VPS is expressed most reliably during observed pain in the hypothalamus. Error bars reflect SEM.
dAttention, dorsal attention; vAttention, ventral attention; Pulv, pulvinar; LGN, lateral geniculate nucleus; MGN, medial geniculate nucleus; VPL, ventral
posterolateral nucleus; VPM, ventral posterior medial nucleus; Intralam, intralaminar nuclei; Midline, midline thalamic nuclei; LD, lateral dorsal nucleus; VL, ventral
lateral nucleus; LP, lateral posterior nucleus; VA, ventral anterior nucleus; VM, ventral medial nucleus; MD, mediodorsal nucleus; AM, anteromedial nucleus; AV,
anteroventral nucleus; Hb, habenula; Hythal, hypothalamus.
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sequelae of the models or examples we discuss here. However,

some are testable: new samples can be evaluated, at least in

models that generalize across individuals, and context can be

systematically varied. The innateness of a brain model can be

indirectly inferred by evaluating it across development, or in

populations with markedly different cultures and experiences.

Such variations are at the core of construct development.

Toward Biologically Driven Construct Development
By explicitly identifying gaps in knowledge, research programs

can move more deliberately and programmatically toward the

goal of identifying brain representations for mental states and

processes. This process is likely to be an iterative one: devel-

oping brain models that predict and explain mental constructs

will require frequent revisions to both brain models and

construct definitions. One goal is to maximize simple struc-

ture: to iteratively refine both psychological constructs and

brain measures to approximate, as closely as possible, a 1:1

correspondence between them. Revisions to models will

teach us about how the brain encodes mental states as we

currently define them, and revisions to constructs will help

us develop new, neuroscience-informed ideas about how the

mind works.
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Neuroimaging has contributed to a tension between psychol-

ogy and neuroscience, as researchers have taken various posi-

tions on what studying the brain can tell us about the mind. One

expression of this tension is a series of articles challenging

whether neuroimaging has taught us anything about how the

mind works (Berman et al., 2006; Coltheart, 2013; Henson,

2005; Mather et al., 2013; Poldrack, 2008; Poldrack andWagner,

2004). While there are various empirical answers to this chal-

lenge, progress is often hard to track because it does not come

in the form of proving or disproving a critical theory about the

mind, but by shifts in the assumptions about how themindworks,

which are often implicit, metaphorical, and embedded in our cur-

rent understanding of physics, computation, and biology.

As an example, computational models of mind are grounded

in the traditional concept of the five senses—a basic, implicit

concept that few cognitive scientists question. But how many

senses are there? Neuroscience has taught us that there is not

simply one sense of ‘‘touch,’’ but multiple types of somatic

sensation that are mediated by distinct pathways and mecha-

nisms (e.g., separate pathways exist for sensation of light touch,

deep pressure, painful pressure, inflammation, and other so-

matic events). For many purposes, including specifying the

computational processes involved and predicting outcomes,
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thesemust not be lumped together—and constructs like ‘‘touch’’

have hampered progress toward understanding and clinical

applications. In addition, some neuroscience findings challenge

the assumption that our five exteroceptive senses are indepen-

dent from one another; for example, auditory information is

encoded in patterns of activity in primary visual cortex, and

vice versa (Amedi et al., 2007; Luo et al., 2010).

The same can be said of ‘‘cognition,’’ ‘‘emotion,’’ ‘‘memory,’’

‘‘language,’’ and other mental constructs—there is meaningful

variation within each mental construct and meaningful similarity

among constructs (Barrett, 2009a; Barrett and Satpute, 2013).

Biological understanding allows us to discover meaningful

categories, as well as new ideas about how assumed categories

(like ‘‘working memory’’) can be affected by processes previ-

ously thought to be unrelated (like ‘‘inflammation’’). Neurosci-

ence can teach us much about the mind if we are open to using

its insights to make novel inferences.

Conclusions
A new wave of multivariate predictive models is relating mind to

brain in new, more powerful ways. In many domains of cognition,

sensation, and affect, such models have highly reproducible

relationships with mental phenomena and behavior. They can

have very large effect sizes, and in some cases are sufficient

to make accurate inferences about individual persons. They can

generalize across individuals and testing contexts, providing

quantitative models that can be falsified, and can have explana-

tory power for understanding the brain bases of mental events.

This literature representsearly steps in aprocessof construct vali-

dation, wherein mental constructs are validated against

brain measures. In the future, neuroimaging research programs

explicitly designed for construct validation will yield yet more

generalizable and useful measures. Such models can serve as

targets for interventions—psychological, pharmacological, and

neurological. Ultimately, such models can also be used to refine

psychological concepts to bring them closer in line with their

biological underpinnings, and thus reinvent how we think about

the mind.

Appendix: Definition of Key Terms
Brain representation: a latent variable that is inferred based

on shared variance between measures of brain activity and out-

comes of interest (e.g., observed behavior, self-report, or phys-

iological responses)

Brain signature: a multivariate brain model that includes

features that span multiple brain systems and is designed to

make predictions on data from a population of individuals

Behavioral domain: a set of conceptually related observable

behaviors that accomplish a common goal

Generalizability: the ability of a model to perform well when

tested in different conditions, e.g., in different scanning sessions,

experimental manipulations, individuals in the same study, or

different studies

Mental construct: categories of mental phenomena that are

inferred by the observation of multiple measurements and are

not directly reducible to any single measure or indicator

Mental process: a sequence of operations (or events) thought

to produce observable outcomes (e.g., behavior or brain activity)
Mental state: the status of ongoing mental processes at a

given point in time

Multivariate brain model: an explicit mapping that transforms

multivariate observations of brain activity (or connectivity) into

an outcome of interest (either discrete or continuous).

Positive predictive value: the proportion of positive predictions

(cases that a model assigns as being the positive class) that

are true positives (cases that have positive ground truth labels);

PPV = TP/(TP+FP), where PPV = positive predictive value,

TP = true positive, and FP = false positive

Reliability: the ability of a model to produce consistent results

in the same conditions

Sensitivity: the proportion of true positives that are predicted

to be positive, also known as the true positive rate; TPR = TP/

(TP+FN), where TPR = true positive rate, TP = true positive,

and FN = false negative

Specificity: the proportion of true negatives that are predicted

to be negative, also known as the true negative rate; TNR = TN/

(TN+FP), where TNR = true negative rate, TN = true negative, and

FP = false positive
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nafò, M.R., Nichols, T.E., Poline, J.B., Vul, E., and Yarkoni, T. (2017). Scanning
the horizon: towards transparent and reproducible neuroimaging research.
Nat. Rev. Neurosci. 18, 115–126.

Polyn, S.M., Natu, V.S., Cohen, J.D., and Norman, K.A. (2005). Category-spe-
cific cortical activity precedes retrieval during memory search. Science 310,
1963–1966.

Pouget, A., Dayan, P., and Zemel, R. (2000). Information processing with pop-
ulation codes. Nat. Rev. Neurosci. 1, 125–132.

Racine, J. (2000). Consistent cross-validatory model-selection for dependent
data: hv-block cross-validation. J. Econom. 99, 39–61.

Reddan, M.C., Lindquist, M.A., and Wager, T.D. (2017). Effect size estimation
in neuroimaging. JAMA Psychiatry 74, 207–208.

Rigotti, M., Barak, O., Warden, M.R., Wang, X.J., Daw, N.D., Miller, E.K., and
Fusi, S. (2013). The importance of mixed selectivity in complex cognitive tasks.
Nature 497, 585–590.

Rissman, J., Greely, H.T., and Wagner, A.D. (2010). Detecting individual mem-
ories through the neural decoding of memory states and past experience.
Proc. Natl. Acad. Sci. USA 107, 9849–9854.

Rolls, E.T. (2007). The representation of information about faces in the tempo-
ral and frontal lobes. Neuropsychologia 45, 124–143.

http://refhub.elsevier.com/S0896-6273(18)30477-X/sref96
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref96
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref96
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref96
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref97
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref97
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref98
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref98
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref98
https://doi.org/10.1016/j.neuropsychologia.2017.07.012
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref100
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref100
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref100
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref101
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref101
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref101
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref102
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref102
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref102
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref103
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref103
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref103
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref104
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref104
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref104
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref105
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref106
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref106
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref106
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref106
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref107
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref107
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref108
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref109
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref109
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref109
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref110
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref110
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref110
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref111
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref111
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref111
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref112
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref112
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref112
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref112
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref113
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref113
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref113
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref114
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref114
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref114
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref114
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref116
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref116
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref116
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref117
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref117
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref117
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref118
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref118
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref118
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref119
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref119
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref119
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref120
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref120
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref121
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref121
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref121
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref122
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref122
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref122
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref123
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref123
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref124
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref124
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref124
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref125
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref125
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref126
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref126
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref127
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref127
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref128
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref128
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref129
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref129
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref129
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref130
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref130
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref130
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref131
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref131
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref131
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref131
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref132
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref132
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref132
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref133
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref133
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref134
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref134
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref135
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref135
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref136
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref136
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref136
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref137
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref137
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref137
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref138
http://refhub.elsevier.com/S0896-6273(18)30477-X/sref138


Neuron

Review
Rose, N.S., LaRocque, J.J., Riggall, A.C., Gosseries, O., Starrett, M.J., Meyer-
ing, E.E., and Postle, B.R. (2016). Reactivation of latent workingmemories with
transcranial magnetic stimulation. Science 354, 1136–1139.

Rosenberg, M.D., Finn, E.S., Scheinost, D., Papademetris, X., Shen, X.,
Constable, R.T., and Chun, M.M. (2016). A neuromarker of sustained attention
from whole-brain functional connectivity. Nat. Neurosci. 19, 165–171.

Rumelhart, D.E., Hinton, G.E., and McClelland, J.L. (1986). A general frame-
work for parallel distributed processing. In Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Volume 1, D.E. Rumelhart
and J.L. McClelland, eds. (MIT Press), pp. 45–76.

Russell, J., and Cohn, R. (2012). Zhonghua Zihai (Book on Demand).

Saarim€aki, H., Gotsopoulos, A., J€a€askel€ainen, I.P., Lampinen, J., Vuilleumier,
P., Hari, R., Sams, M., and Nummenmaa, L. (2016). Discrete neural signatures
of basic emotions. Cereb. Cortex 26, 2563–2573.

Sarter, M., Berntson, G.G., and Cacioppo, J.T. (1996). Brain imaging and
cognitive neuroscience. Toward strong inference in attributing function to
structure. Am. Psychol. 51, 13–21.

Schulz, K., Sydekum, E., Krueppel, R., Engelbrecht, C.J., Schlegel, F.,
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