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Summary. Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with
meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the
article are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to (i) identify areas of
consistent activation; and (ii) build a predictive model of task type or cognitive process for new studies (reverse inference). To
simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from
each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterized as a linear
combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor
modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates
(meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We
apply our methodology to synthetic data and neuroimaging meta-analysis datasets.
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1. Introduction

Functional magnetic resonance imaging (fMRI) has become
an essential, non-invasive, tool for learning patterns of acti-
vation in the working human brain (e.g., Pekka, 2006; Wager
et al., 2015). Whenever a brain region is engaged in a par-
ticular task, there is an increased demand for oxygen in that
region which is met by a localised increase in blood flow. The
MRI scanner captures such changes in local oxygenation via
a mechanism called the Blood Oxygenation Level-Dependent
(BOLD) effect; see, for example, Brown et al. (2007) for a
brief introduction on fMRI. The great popularity that fMRI
has achieved in recent years is supported by various software
packages that implement computationally efficient analysis
through a mass univariate approach (MUA). Specifically,
MUA consists of fitting a general linear regression model at
each voxel independently of every other voxel, thus produc-
ing images of parameter estimates and test statistics. These
images are then thresholded to identify significant voxels or
clusters of voxels, and significance is typically determined via
random field theory (Worsley et al., 1996) or permutation
methods (Nichols and Holmes, 2001). Despite its simplicity,
the MUA lacks an explicit spatial model. Even though the
activation of nearby voxels is correlated, estimation with the
MUA ignores the spatial correlation; crucially inference later
accounts for it when random field theory or permutation pro-
cedures define a threshold for significant activation.

The relatively high cost of MRI scanner time, however, pose
some limitations to single fMRI studies. The main limita-
tion is the small number of subjects that can be recruited
for the study, often fewer than 20 (Carp, 2012). As a result,
most fMRI studies suffer from inflated type II errors (i.e.,
low power) and poor reproducibility (Thirion et al., 2007).
To overcome these limitations there has been an increasing
interest in the meta-analysis of neuroimaging studies. By com-
bining the results of independently conducted studies, meta-
analysis increases power and can be used to identify areas of
consistent activation while discounting chance findings.

In addition to the identification of areas of consistent
activation (a.k.a. forward inference), there has been intense
interest in the development of meta-analytic methods to
implement proper reverse inference (Yarkoni et al., 2011).
Reverse inference refers to inferring which cognitive process
or task generated an observed activation in a certain brain
region. Suppose that researchers develop a task to probe cog-
nitive process A and find that brain area X is activated.
A common but misguided practice in neuroimaging is to
conclude that activation of brain region X is evidence that
cognitive process A is engaged. However, this logic is wrong
and the resulting inference is faulty. In fact, a single region
may be activated by a range of different tasks (Yeo et al.,
2015).
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Given that published fMRI studies rarely share the statis-
tic images or raw data, meta-analysis techniques are typically
based on coordinates of activation, that is, the (x, y, z)
coordinates of local maxima in significant regions of activa-
tion, where the coordinate space is defined by a standard
anatomical atlas. We shall refer to these coordinates as
foci (singular focus), and denote the meta-analysis based on
foci as Coordinate-Based Meta-Analysis (CBMA). Several
approaches to CBMA can be found in the literature. See, for
example, Turkeltaub et al. (2002); Wager et al. (2007); Kober
et al. (2008); Eickhoff et al. (2009); Kang et al. (2011, 2014);
Yue et al. (2012). These methods can be categorised as either
kernel-based or model-based approaches (refer to Samartsidis
et al. (2016) for an extensive review).

The most popular kernel-based approaches to CBMA are
activation likelihood estimation (Turkeltaub et al., 2002,
ALE), modified ALE (Eickhoff et al., 2009, modALE), and
multilevel kernel density analysis (Wager et al., 2007; Kober
et al., 2008, MKDA). These methods proceed in three main
steps. First, one creates focus maps for each focus in each
study; in these images the intensity at each voxel depends
on the proximity of that voxel to that map’s focus. For
each study, there are as many focus maps as the number
of reported foci. These focus maps are then combined to
create study maps, which are further combined into a sin-
gle statistic image (meta-analysis map) that represents the
evidence for consistent activation (clustering). Significance of
the statistic image is assessed with a Monte Carlo test under
the null hypothesis of complete spatial randomness. The dif-
ference across the aforementioned methods lie in how they
create the foci maps, and in how these maps are combined
into study and meta-analysis maps. These approaches, how-
ever, have some serious limitations. In particular, they are
based on a MUA that lacks an explicit spatial approach to
the modeling of the foci. As opposed to generative, multivari-
ate (spatial stochastic) models, kernel-based methods do not
provide an accurate representation of the true data generating
mechanism (non-generative methods) as they do not jointly
characterize randomness of the number and locations of acti-
vations within each study. Further, these methods do not
provide any measure of uncertainty associated with the effect
estimate, and conclusions could be misleading. For example,
Samartsidis et al. (2016) show that power properties of ALE
do not degrade with the inclusion of poor quality studies.
Finally, kernel-based methods require ad-hoc spatial kernel
parameters (full width half max, FWHM) that need to be
pre-specified, and a poor choice for the kernel size could poten-
tially affect the results. In particular, Tench et al. (2014) show
that fixing the kernel-size can result in increased false posi-
tives as the number of studies in the meta-analysis increases.
To overcome this limitation, the authors redefine the FWHM
parameter as function of the number of studies in the analysis
and provide a method to estimate it.

Recently, model-based approaches have been proposed to
overcome some of the limitations of kernel-based methods. All
of these methods are grounded in the spatial statistics liter-
ature and utilize spatial stochastic models for the analysis of
the foci. However, there are relatively few works that take this
approach. Kang et al. (2011) propose a Bayesian spatial hier-
archical model using a marked independent cluster process.

Despite its flexibility, the model involves many hyperprior
distributions whose parameters are challenging to specify and
require expert opinion, and the posterior intensity function
is somewhat sensitive to the choice of hyperpriors. Yue et al.
(2012) propose a Bayesian spatial binary regression model
where the probability that a voxel is reported as a focus, p(ν),
is modeled via logistic regression, p(ν) = �(z(ν)), and z(ν) is
modeled as a spatially adaptive Gaussian random field. This
method, however, does not treat the number and the location
of the foci for each study as random. Also, it does not treat the
meta-analysis studies as the units of observation, but rather
the data at each voxel. Further, both Kang et al. (2011) and
Yue et al. (2012) propose models for a single, homogeneous
group of studies whereas it is common practice in meta-
analysis to simultaneously consider several types of tasks.
To address this limitation, Kang et al. (2014) generealize the
Poisson/gamma random field (PGRF) model of Wolpert and
Ickstadt (1998) to a Bayesian hierarchical PGRM fit to multi-
type meta-analyses. In particular, the authors regard the foci
from each type of study as a realization of a Poisson point
process driven by a type-specific random intensity function,
which is modeled as a kernel convolution of a type-specific
gamma random field. These type-specific gamma random
fields are modeled as a realization of a common gamma ran-
dom field shared by all types (hence the hierarchy), thus
introducing dependence between types. Also, the authors pro-
pose a model-based classifier to perform reverse inference.
While the hierarchical PGRF is a flexible non-parametric
model, it relies on highly advanced mathematical and sta-
tistical modeling that could be less interpretable and more
difficult to communicate to a less-technical audience. Also,
this model is difficult to re-implement if software is not made
available. Finally, the model does not accommodate covari-
ate information, though an extension to meta-regression is
possible.

In this article, we propose a Bayesian hierarchical model
that extends the Bayesian latent factor regression model for
longitudinal data of Montagna et al. (2012) to the analysis
of CBMA data. In particular, we model the foci from each
study as a “doubly stochastic” Poisson process (Cox, 1955),
where the study-specific log intensity function is characterised
as a linear combination of a three-dimensional basis set. We
induce sparsity on the basis function coefficients via a latent
factor model, and information on covariates is incorporated
through a simple linear regression model on the latent fac-
tors. Further, the latent factors are used as a vehicle to link
the intensity functions to a study-type as part of a scalar-on-
image regression. Our fully Bayesian CBMA model permits
explicit calculation of a posterior predictive distribution for
study type and, as a result, allows inference on the most likely
domain for any new experiment by just using its foci. We
illustrate our approach on a functional neuroimaging meta-
analysis of emotions first reported in Kober et al. (2008). We
focus on a subset of the original dataset that consists of 187
studies on five emotions (sad, happy, anger, fear, and disgust)
reporting a total of 984 foci. The goal is to find consistent
regions of activation across the different studies and types of
emotions.

The remainder of this article is organised as follows.
Section 2 describes our spatial latent factor regression model
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for CBMA data and outlines a connection with functional
principal component analysis. In Section 3, we apply our
model to the meta-analysis dataset of emotion studies, and
compare our results with MKDA. We conclude the manuscript
with a final discussion of our model (Section 4).

2. Spatial Bayesian Latent Factor Regression for
CBMA

In this Section, we present our spatial Bayesian latent fac-
tor regression for CBMA data. Articles often report results
from different statistical comparisons called contrasts, here-
after called studies. Following the convention of existing
neuroimaging CBMA, we treat the studies as independent.
The model outlined in Section 2.1 generalizes Montagna et al.
(2012) to the case where observations are spatial point pat-
terns from different studies. Each spatial point pattern is
assumed to be an independent realization of a spatial point
process. In Section 2.2, we show how the model accom-
modates reverse inference. Section 2.3 further discusses the
methodology by presenting an analogy with functional prin-
cipal component analysis (fPCA). Here, the word “functional”
stems from the application of PCA to random functions such
as curves or any data object varying over a continuum, dis-
tinct from “functional” in fMRI.

2.1. The Model

Consider independent spatial point patterns arising from
n studies, x1, . . . ,xn. We regard xi as a realization of a dou-
bly stochastic Poisson process (Cox, 1955) Xi driven by a
non-negative random intensity function μi defined on a com-
mon brain template B⊂R3 with finite volume |B|. Given that
observations are independent, the sampling distribution is

π({xi}n
i=1|{μi}n

i=1) ∝
n∏

i=1

⎡
⎣exp

{−Mi(B)
} ∏

xij∈xi

μi(xij)

⎤
⎦

= exp

{
−

n∑
i=1

Mi(B)

}
n∏

i=1

∏
xij∈xi

μi(xij), (1)

where xi = {xij}ni
j=1 is the set of foci reported by study i, xij =

(xij1, xij2, xij3)
� represents the centre of a voxel (or vertex),

and Mi(B) denotes a non-negative intensity measure, Mi(B) =∫
B

μi(s)ds < ∞, for any Borel measurable subset B ⊆ B. To
simplify the notation, we will denote a focus in the brain as
ν hereafter.

For the modeling of the random functions μ1, . . . , μn, we
follow Montagna et al. (2012). Specifically, we write log μi in
terms of a collection of basis functions

log μi(ν) =
p∑

m=1

θimbm(ν) = b(ν)�θi. (2)

This specification implies that the log intensity function
belongs to the span of a set of basis functions, {bm(·)}p

m=1, with
θi denoting a vector of study-specific coefficients. Choosing
the functions {bm(·)}p

m=1 is particularly challenging since the
appropriate basis is not known in advance and, conceptually,

any bases can be chosen. For example, B-splines or Gaussian
kernels can be used to model smooth μi intensities. Hereafter,
we use 3D isotropic Gaussian kernels

b1(ν) = 1, and bm(ν) = exp{−b||ν − ψm||2}, m = 2, . . . , p,

(3)

with kernel locations {ψm}p

m=2 and bandwidth b to be specified
according to prior knowledge (refer to Web Appendix A for
a discussion). More flexible approaches allow the number and
locations of the kernels to be unknown and estimated by the
sampler, at the expense of a great increase in computational
cost. Hereafter, we prefer adopting a computational-savvy
approach by fixing the bases, and use sensitivity analysis to
help us determine reasonable choices for p and kernel loca-
tions. We remark that we also implemented our model using
B-splines and we did not find significant differences in the
results reported hereafter.

Representation (2) constitutes an alternative to the
typical log Gaussian Cox process prior on μi (LGCP,
Møller et al., 1998), which is a widely popular prior within the
spatial statistics literature. As its name suggests, the LGCP is
a Cox process with μi(ν) = exp{Z(ν)}, where Z is modeled as
a Gaussian process. The most attractive feature of this model
is that it provides a flexible and relatively tractable construc-
tion for describing spatial phenomena. Inference for LGCPs
is, however, a computationally challenging problem, and the
main barrier is the computation of the covariance matrix of
Z. In a typical neuroimaging application, this matrix is very
large as its dimensions correspond to the number of voxels
in the brain mask (typically, more than 150,000 voxels on a
2 × 2 × 2 mask). Fortunately, for covariance functions defined
on regular spatial grids there exist fast methods for computing
the covariance based on the discrete Fourier transform (Wood
and Chan, 1994; Rue and Held, 2005). A basis function rep-
resentation as in equation (2) completely removes the need
of computing the covariance matrix (and its inverse), hence
has a natural computational advantage over LGCPs in this
regard.

By characterising the study-specific log intensity functions
by a vector of coefficients with respect to a common basis rep-
resentation, all variation between the study-specific intensities
are reflected through the variation in the vectors θ1, . . . , θn.
However, the basis function approach fails to obtain a low
dimensional representation of the individual intensities. Low
dimensional representations are crucial when building a hier-
archical model where the foci are to be linked, as predictors or
outcomes, with other variables under study. In our construc-
tion, the μi’s are represented by the long vector of coefficients
(θi1, . . . , θip). Unless the μi’s are sparse in the chosen basis,
these vectors are dense, meaning that any projection of these
vectors onto a lower dimensional space results in a substantial
loss of information. To obtain a low-dimensional representa-
tion of log μi, we follow the lead in Montagna et al. (2012) and
place a sparse latent factor model (Arminger and Muthén,
1998) on the basis coefficients

θi = �ηi + ζi, with ζi ∼ Np(0, �) (4)

where θi = [θi1, . . . , θip]
�, � is a p × k factor loading matrix

with k 
 p, ηi = (ηi1, . . . , η1k)
� is a vector of latent factors
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for study i, and ζi = (ζi1, . . . , ζip)
� is a residual vector that

is independent with the other variables in the model and is
normally distributed with mean zero and diagonal covariance
matrix � = diag(σ2

1 , . . . , σ2
p). Vectors η1, . . . , ηn can be put in

any flexible joint model with other variables of interest. For
example, information from covariates Zi can be incorporated
through a simple linear model

ηi = β�Zi + 
i, with 
i ∼ Nk(0, I), (5)

where β is a r × k matrix of unknown coefficients, and r

denotes the dimension of Zi.
Despite the simplicity of this hierarchical linear model,

the resulting structure on log μi(ν) allows a very flexible
accommodation of covariate information. Specifically, if we
marginalise out {θi, ηi}, our model results in a (finite rank)
GP for log μi with covariate dependent mean function

Mean[log μi(ν)] =
k∑

l=1

β�
l Ziφl(ν) =

r∑
j=1

Zij ×
[

k∑
l=1

βjlφl(ν)

]

(6)
and common covariance function

Cov{log μi(ν), log μi(ν
′)} =

k∑
l=1

φl(ν)φl(ν
′) +

p∑
m=1

σ2
mbm(ν)bm(ν′),

(7)

where φl(ν) = ∑p

m=1
λlmbm(ν), and βl is the lth column of β.

equation (6) shows how the matrix of covariate coefficients
β impacts on the expected log intensity function. In partic-
ular,

∑k

l=1
βjlφl(ν) quantifies the expected difference in the

mean log intensity function at voxel ν for a one-unit change
in the value of covariate j, with all other quantities being
equal. Maps

∑k

l=1
βjlφl(·) will be shown for the real data

application in Section 3. The use of Gaussian-shaped basis
functions (centred densely in the ν-space) guarantees that the
covariance function in equation (7) corresponds to the station-
ary squared-exponential covariance function (Mackay, 1998;
Rasmussen and Williams, 2005). If a non-stationary covari-
ance is warranted, multiresolution (wavelet) basis functions
could be alternatively considered.

2.2. Reverse Inference

In response to an increasing interest in reverse inference, we
focus on the development of a methodology which accom-
modates joint modeling of neuroimaging point pattern data
with study types. Suppose, we have new point pattern data
xnew that is a realization from one of T tasks or cognitive
processes, ynew. Further, we have point pattern data from
n studies for which the corresponding task or cognitive
process is known, {xi|yi}n

i=1 with yi ∈ {1, . . . , T }. Interest is
in quantifying the probability that the new point pattern
data arose from a specific task type, that is, the posterior
predictive probability that xnew originates from type t,
Pr(ynew = t|xnew, {xi|yi}n

i=1). Our fully Bayesian model for
neuroimaging point pattern data allows inference on the
most likely domain for any new experiment.

Hereafter, we extend the model focusing on our motivat-
ing application, a meta-analysis of emotions first reported in
Kober et al. (2008). We use a subset of the data and focus
on five emotions: sad, happy, anger, fear, and disgust. To
predict the emotion elicited in a newly presented study, we
need to build a predictive model for the study type. In a
recent contribution, Johndrow et al. (2013) developed the
diagonal orthant multinomial (DO) models, a new class of
models to the Bayesian classification of unordered categorical
response data. DO models circumvent the traditional limita-
tions faced by multinomial logit and probit models in complex
settings while maintaining flexibility. Hereafter, we adopt the
DO multinomial probit as our predictive model, and defer to
Johndrow et al. (2013) for a general discussion on details and
properties of the DO multinomial class of models.

Let yi be unordered categorical with J = 5 levels, and sup-
pose Wi,[1:J] are independent binary variables. We define

yi = j ⇐⇒ {Wij = 1} ∪ {Wik = 0 ∀ k �= j}. (8)

The binary variables Wi,[1:J] have a well-known latent
variable representation. In particular, Wij = 1 ⇐⇒ χij > 0,
where χij ∼ N(mij, 1). To ensure that only one Wij is equal to
one, the DO model restricts the latent variables to belong to
set:

� = ∪J
j=1{χi ∈ RJ : χij > 0, χik < 0, k �= j}.

As Johndrow et al. (2013) remark, the joint probability
density of χi’s is that of a J-variate Gaussian distribution
with identity covariance that is restricted to regions of RJ

with one sign positive and the others negative. The categorical
probabilities of class membership are easily derived as

Pr(yi = j) =
(1 − �(−mij))

∏
k �=j

�(−mik)∑J

j=1
(1 − �(−mij))

∏
k �=j

�(−mik)
,

where �(·) corresponds to the standard normal CDF. The
parameters of the DO probit model can be estimated via
independent binary regressions, providing substantial com-
putational advantages over multinomial probit models (see
Johndrow et al. (2013)). We model the mean of the latent
Gaussian random variables as mij = αj + γ�

j ηi, where parame-
ter αj can be interpreted as the baseline probability that study
i is of type j whereas γ�

j ηi accounts for study-specific random
deviations. Notice that the latent factors ηi (Section 2.1) are
used as a vehicle to link the random intensities (thus, the foci)
to the study-type.

The proposed framework can be easily modified for joint
modeling of data of many different types, for example, the DO
model for an unordered categorical outcome can be replaced
by an appropriate predictive model for binary, ordered cate-
gorical, or continuous study features (for a binary example,
refer to Web Appendix C). The key idea is to use the low
dimensional vectors η1, . . . , ηn in all subsequent parts of the
model where one seeks to link intensities log μ1, . . . , log μn

with other variables of interest. We finally remark that we do
not choose θi for this task because this vector has a much
bigger dimension than that of ηi, and its inclusion in the
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predictive model for study type would introduce unnecessary
complications in posterior update of θi while also increasing
the dimensionality of vectors {γj}J

j=1.
We close this Section by providing a graphical representa-

tion (Figure 1) of the spatial Bayesian latent factor model out-
lined above and in § 2.1. The vector of latent factors plays the
key role in linking the two component models for study-type
and random intensities, and the study-type yi is condition-
ally independent of all nodes in the random intensity model
given the latent factors. All parameters located outside of the
dashed rectangle (αj, γj, β, �, �) are shared and estimated by
pulling information across all studies, thus allowing for bor-
rowing of information. If covariate information is available,
covariates impact on the ηi’s via a linear regression model.

2.3. fPCA-Analogue Construction

The vector of latent factors ηi can also be interpreted as a
coefficient vector by writing

log μi(ν) =
k∑

l=1

ηilφl(ν) + ri(ν), (9)

with

φl(ν) =
p∑

m=1

λlmbm(ν) and ri(ν) =
p∑

m=1

ζimbm(ν), (10)

where {φl}k
l=1 forms an unknown non-local basis set to be

learnt from the data and ri is a function-valued random
intercept.

We recall that the GP model can be viewed as an infi-
nite dimensional basis-function expansion. For example, the
Karhunen–Loéve expansion of a GP f (with known covari-
ance parameters) at ν can be written as f (ν) = ∑∞

k=1
wkek(ν),

where the basis functions ek are orthogonal and the coefficients
{wk} are independent, zero-mean normal random variables.
The variance of wk is equal to the kth largest eigenvalue.
The empirical version (i.e., with the coefficients computed
from a sample) is known as fPCA. Decomposition (9), with-
out ri(ν), is analogous to a truncated fPCA representation
of log μi(ν), however bases {φl}k

l=1 are no longer mutually
orthogonal within our construction. Orthogonality enhances
interpretability of the elements of the decomposition, but this

ηipyi

yi

θi

μi(xi) xi

Zi

β Λ

ζi

Σ

{αj,γj}J
j=1

i = 1, . . . , n

Study-type model

Random intensity (foci) model

Covariates component

Pr(yi = j|{αj ,γj}J
j=1,ηi)

π(xi|μi)

Figure 1. Graphical representation of the probabilistic mechanism generating data {xi, yi}, i = 1, . . . , n, under the spatial
Bayesian latent factor model. Shaded squares represent observed quantities and circles represent unknowns. The circle denoting
the vector of latent factors is darkened. Note that the study type, yi, is conditionally independent of all other nodes in the
“random intensity model” given the latent variables ηi.
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is not a primary concern in our application because we view
the latent factorisation only as a vehicle to link the intensities
with other variables. To highlight this difference with fPCA,
we refer to {φl}k

l=1 as a dictionary.
The size k is chosen adaptively during posterior compu-

tation and the elements of the dictionary depend on the
modeling of �. A discussion on prior specification for the
model parameters is presented in Web Appendix A of the
Supplementary Materials.

3. Neuroimaging Meta-Analysis Application

In this Section, we illustrate our approach on a meta-analysis
of emotions first reported in Kober et al. (2008). The dataset
consists of 62 publications on five emotions (sad, happy, fear,
anger, disgust), for a total of 187 studies and 938 foci shown
in Web Figure 1. For each study, we also observe modality
(fMRI/PET), inference method (fixed vs. random effects),
p-value correction (corrected vs. uncorrected), the number of
subjects scanned, and the type of stimulus (auditory, visual,
recall, imagery, visual and auditory, olfaction), for a total of
r = 5 covariates. Table 1 lists some summary statistics of this
dataset. It is important to remark that the assumption of
independence between studies (equation (1)) might be vio-
lated here, for example, if multiple experiments were run on
the same subjects, and this could potentially influence our
findings.

Given the sparsity of this dataset, it becomes crucial to
borrow information across the population of intensities to
improve inferences. Specifically, the model allows borrowing
strength across the different studies in estimating their inten-
sity functions in that the low dimensional dictionary functions
{φ̃m}, their number, and the random intercept ri(ν) are learnt
by pooling information from all studies.

We assigned a Gamma(1, 0.3) prior distribution with
mean 1/3 to the diagonal elements of �−1. We set p =
424 Gaussian kernels with bandwidth b = 0.002. Kernels
were placed on axial slices roughly 8–9 mm apart, at z =
{−36, −28, −19, −10, −2, 7, 16} mm and, within each slice,
were equally spaced by forming a grid of 8 × 8 knots along the
(x, y) direction. We used a standard brain mask with 2 mm3

voxels and dimensions 91 × 109 × 32. Kernels falling outside
this mask were discarded. We performed a sensitivity analy-
sis on the priors for σ−2

j , the factor loadings, on p and b, and
found no substantive differences. To update the basis func-
tion coefficients via Hamiltonian Monte Carlo (Neal, 2010),
we adopted the leapfrog method for L steps and with a step-
size of ε. At each iteration of the MCMC sampler, a new
value for L was drawn from Poisson(30) and the stepsize was
adapted every 10 iterations during burn-in to benchmark an
average acceptance rate of 0.65 over the previous 100 itera-
tions in the Metropolis–Hastings step. The sampler was run
for 15,000 iterations, with the first 5,000 samples discarded

Table 1
Data summaries

Min Median Mean Max.

Studies per publication 1 2 3.02 9
Foci per study 1 4 5.02 22
Subjects per study 5 12 13.56 40

(a) Descriptive statistics.

Emotions

Sad Happy Fear Anger Disgust Total

Total number of foci 220 92 264 99 263 938
Number of studies 33 27 62 22 43 187

fMRI 17 12 53 15 39 136
PET 16 15 9 7 4 51

Fixed 18 14 30 10 12 84
Random 15 13 32 12 31 103

Corrected p-values 9 5 12 3 14 43
Uncorrected p-values 24 22 50 19 29 144

Auditory 1 1 5 1 2 10
Visual 20 17 52 16 37 142
Recall 10 8 3 1 1 23
Imagery 2 – – 4 2 8
Visual and auditory – 1 2 – – 3
Olfaction – – – – 1 1

(b)For each emotion type: total number of foci, total number of studies, frequency of modality (fMRI/PET), inference method
(Fixed/Random effects), corrected versus uncorrected thresholds used, and type of stimulus.
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as a burn-in and collecting every 25 th sample to thin the
chain. We assessed convergence of the chain by multiple runs
of the algorithm from over-dispersed starting values and visu-
ally inspected the differences in the posterior log intensity
function μi(ν) at a variety of voxels and for different studies.
The sampler appeared to converge rapidly and mix efficiently
(Web Figure 2). Further, we used the Gelman–Rubin statis-
tics (Gelman and Rubin, 1992) to assess convergence on the
number of latent factors, k. The mean of the potential scale
reduction factor is 1 with an upper 0.975 quantile of 1.02.
Thus, the number of iterations and burn-in appears to be
sufficient.

Figure 2 shows the estimated posterior mean group inten-
sity for the five emotion types. The group intensity at iteration
t, μ̂t

g, is obtained by averaging the basis function coefficients

for studies that belong to the group, μ̂t
g(ν) = exp{b(ν)�θ̂

t

g},
where θ̂

t

g = 1
Card(g)

∑
i∈g

θ̂
t

i and Card(g) is the cardinality of
group g. These maps reflect the degree of consistency with
which a region is activated by either emotion. All emo-
tions show aggregation of foci in the amygdalae (the brighter
regions at axial slices z = −27, −19, −11 mm), although to
varying degrees. The amygdalae are almond-shaped struc-
tures in the brain of known importance in emotion processing.
The estimated intensity is larger in the amygdalae for disgust
and fear, which are the two emotion types with more foci and
studies.

It is also of interest to examine the dictionary elements
{φl}k

l=1. The interpretation of these elements has to be done
with care in that they do not constitute orthogonal bases as
the eigenfunctions in the fPCA literature. However, examin-
ing the dictionary is useful to visualize how the model moves
away from the fixed isotropic Gaussian kernels and learns a
set of dictionary elements that are useful to represent the
intensities. The posterior mean number of latent factors is
k = 5 with 95% credible interval [4, 6]. Figure 3 shows the
first five elements of the dictionary {φl}5l=1 (rows) at sev-
eral axial slices (columns). Notice how the magnitude of the
learnt bases decreases as k increases, with the first couple of
dictionary elements describing the principal patterns of acti-
vation and the successive elements progressively shrunk
toward zero. This effect is induced by a shrinkage prior
on the factor loadings (see Web Appendix A). At every
axial slice, the first dictionary element recovers the prin-
cipal patterns of activation we observed in Figure 2,
namely activation in the amygdalae. Subsequent dictionary
elements are harder to interpret and of more marginal
effect.

Figure 4 shows the covariate coefficients maps as of
equation 6. In particular, map

∑k

l=2
βjlφl(ν) quantifies the

expected difference in the mean log intensity function at voxel
ν for a one-unit change in the value of covariate j, with all
other quantities being equal. Notice that the first element
of this sum, the intercept, is removed for illustrative pur-
poses, and all maps are plotted on the same color scale. It
appears that the covariates with strongest effect on the mean
log intensity function are modality (whether the study is PET
or fMRI) and p-value correction for multiple hypothesis test-
ing. As expected, failing to correct for multiplicity results
in a higher mean log intensity function particularly in the

amygdalae, thus one expects here more foci than those
reported by a study that controls for multiple testing. The
map for modality (first row in Figure 4 is qualitatively simi-
lar to that of p-value correction (last row in Figure 4, while
other maps are shrunk to zero and do not seem indicate a
strong covariate effect.

For reverse inference, we split the data into a training set,
for which both foci and study type are retained for the anal-
ysis, and a testing set (80%), for which the foci only are
retained, and we test the predictive accuracy of our model
using the DO multinomial probit model of Section 2.2. We
compare our method to previous work that combines MKDA
and a näıve Bayesian classifier (NBC) (Yarkoni et al., 2011).
Using the MKDA framework, this method creates a study-
specific binary activation map, where a voxel is given a
value of 1 if it is within a 10 mm (Euclidian) distance of
a reported focus, and 0 otherwise. For each group (study
type), an activation probability map is constructed by tak-
ing a weighted average of the binary maps of the studies in
that group. Further, the predictive probability of the study
type given activation from a new study is then computed
using the activation probability maps via Bayes’ theorem and
under the assumption of independence across voxels. This
method is computationally efficient, but ignores the spatial
dependence in the activation maps, leading to biased predic-
tive probabilities of the class membership. Table 2 shows the
out-of-sample classification rates based on our model as well
as those based on the MKDA using the NBC. The simple aver-
age of correct classification rates over emotions equals 0.26 for
our model and 0.25 for MKDA + NBC. Both methods tend
to classify studies in the test set as fear, which is the most
represented emotion in our dataset. While MKDA + NBC
does a better job in correctly classifying fear studies, we
do better than MKDA in correctly classifying the other
emotions, in particular happiness and sadness. In general,
however, the sparsity of this dataset and the limited number of
studies make classification a challenging task, and both meth-
ods only slightly go above the random classification chance
of 0.20.

We also tested our model on a meta-analysis dataset of
emotion and executive control studies (Web Appendix C).
There is substantial convergence about the systems broadly
involved in each domain, and though they interact, cog-
nitive control and emotion are associated with distinct
large-scale networks. With this richer dataset, it becomes
more evident that taking into account the spatial information
in the data helps achieving better predictive perfor-
mance over the MUA. Finally, simulations and sensitivity
analyses are reported in the Supplementary Materials
(Web Appendix D).

4. Discussion

The article has proposed a spatial Bayesian latent factor
regression model for CBMA data. The basic formulation
generalizes the Bayesian latent factor regression model of
Montagna et al. (2012), which was developed for the mod-
eling of time-course trajectories, to the analysis of spatial
point pattern data for neuroimaging meta-analysis. This
allows one to include a high-dimensional set of pre-specified
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Figure 2. Posterior mean estimated intensity maps for the five emotion types. Here, we only show six axial slices (rows) of
the full 3D results.
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Figure 3. Learnt dictionary elements {φl}5l=1 at six axial slices (columns). The estimated posterior mean number of factors
is k = 5.
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Figure 4. Estimated mean posterior covariate coefficients maps as of equation (6) at six different axial slices. All maps are
plotted on the same color scale.

basis functions, while allowing automatic shrinkage and
effective removal of basis coefficients not needed to charac-
terize any of the study-specific intensity functions. Further,
we accommodate joint modeling of an imaging predictor,
the log intensity function, with an unordered categorical
response, the study type, within a framework of scalar-
on-image regression. Along the same lines, the proposed
framework can be easily modified for joint modeling of data
of many different types, for example, the DO multinomial

probit model can be replaced by an appropriate predictive
model for binary, ordered categorical, or continuous study
features.

There are a couple of limitations affecting our approach.
First, our model is suited to studying only activations or
only deactivations, but not both simultaneously. Second, as
evident in equation (1), our model treats the studies as inde-
pendent and does not account for within-experiment and
within-group effects on the results. Within-experiment effects
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Table 2
Out-of-sample classification rates. The average correct

classification rate is 0.264 for the spatial Bayesian latent
factor model (SBLFM) and 0.258 for MKDA+NBC

Correct Classification Rates

Truth Anger Disgust Fear Happy Sad

SBLFM
Anger 0.05 0.12 0.56 0.09 0.18
Disgust 0.04 0.26 0.53 0.06 0.11
Fear 0.06 0.15 0.56 0.10 0.13
Happy 0.08 0.11 0.33 0.18 0.30
Sad 0.09 0.08 0.43 0.13 0.27

MKDA + NBC
Anger 0.00 0.00 0.91 0.00 0.09
Disgust 0.03 0.21 0.58 0.09 0.09
Fear 0.02 0.03 0.92 0.03 0.00
Happy 0.00 0.00 0.88 0.04 0.08
Sad 0.12 0.03 0.73 0.00 0.12

occur when studies reporting multiple foci close together in
a given activation area of the brain may have a stronger
influence on inference and prediction than studies reporting
a single focus. Within-group effects occur when the same
group of subjects is used to investigate multiple similar
tasks, usually in the same scanning session, thus the result-
ing activation patterns can not be considered as independent
observations. While highly simplifying the mathematical lay-
out and computation for our model, the assumption that
studies are truly independent might often be violated in prac-
tice. Both limitations above will be investigated in future
research.

Another interesting future direction within our modeling
approach is to combine CBMA data with intensity-based
meta-analysis (IBMA) data. The volume of literature on
IBMA is still limited, though we note that there is a grow-
ing interest among researchers in sharing full image data and
statistic maps from the studies. The extension to joint mod-
eling of multi-type IBMA and CBMA data will be explored
in future research.

5. Supplementary Materials

Web Appendices A, C, and D, and Web Figures 1 and 2 ref-
erenced in Sections 1, 2, 3, and the code used for the analysis
are available with this article at the Biometrics website on
Wiley Online Library.
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