
Expert Systems With Applications 140 (2020) 112890 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

Analysis of multimodal physiological signals within and between 

individuals to predict psychological challenge vs. threat 

Aya Khalaf a , Mohsen Nabian 

b , Miaolin Fan 

c , Yu Yin 

b , Jolie Wormwood 

d , Erika Siegel e , 
Karen S. Quigley 

d , Lisa Feldman Barrett d , Murat Akcakaya 

a , Chun-An Chou 

c , 
Sarah Ostadabbas b , ∗

a Electrical & Computer Engineering Department, University of Pittsburgh, PA, USA 
b Electrical & Computer Engineering Department, Northeastern University, MA, USA 
c Mechanical & Industrial Engineering Department, Northeastern University, MA, USA 
d Department of Psychology, University of New Hampshire, NH, USA 
e Department of Psychology, University of California San Francisco, CA, USA 

a r t i c l e i n f o 

Article history: 

Received 27 January 2019 

Revised 30 July 2019 

Accepted 18 August 2019 

Available online 19 August 2019 

Keywords: 

Challenge vs. threat 

Multimodal data fusion 

Mutual information 

Support vector machines 

Clustering 

Graph theory 

a b s t r a c t 

Challenge and threat characterize distinct patterns of physiological response to a motivated performance 

task where the response patterns vary as a function of an individual’s evaluation of task demands rel- 

ative to his/her available resources to cope with the demands. Challenge and threat responses during 

motivated performance have been used to understand psychological, behavioral, and biological phenom- 

ena across many motivated performance domains. In this study, we aimed to investigate individual and 

group-level variations in physiological responding across a series of motivated performance tasks that 

vary in difficulty. The proposed approach is motivated by documented individual differences in physiolog- 

ical responses observed in motivated performance tasks, such that we first focus on individual differences 

in physiological responses rather than group-level comparisons. Then, through our analysis of individu- 

als we identify sub-groups (i.e., clusters) of individuals that share common physiological patterns across 

tasks of varying difficulty and we perform across-subject analysis within each cluster. This is distinct from 

existing studies which typically do not examine individual vs. subgroup-specific patterns of physiological 

activity. Such an approach enables us to identify patterns in physiological responses that can be used to 

predict self-reported judgments of challenge vs. threat with higher accuracy in each subgroup compared 

to an analysis that includes the entire sample population as a single group. Specifically, three hypothe- 

ses were tested: (H1) individuals will have different sets of physiological patterns (features) across tasks 

of varying difficulty; (H2) there will be subgroups of individuals who share common salient physiolog- 

ical features across the subgroup clusters that differentiate their physiological responding across tasks 

of varying difficulty; and (H3) the accuracy of predicting self-reported judgments of challenge vs. threat 

across individuals will be higher within each subgroup with shared salient physiological features than 

across all subgroups or the entire sample with all computed features. To test these hypotheses, we de- 

veloped an integrated analytic framework for multimodal physiological data analysis. We employed data 

from an existing experiment in which participants completed three mental arithmetic tasks of increasing 

difficulty during which different modalities of physiological data were collected. Analyses revealed three 

subgroups of participants who shared common features that best differentiated their within-individual 

physiological response patterns across tasks. Support vector machine (SVM) classifiers were trained using 

both shared features within each group and all computed features to predict challenge vs. threat states. 

Results showed that, the within-group classification model using group common features achieved higher 

self-report prediction accuracy compared to an alternative model trained on data from all participants 

without feature selection. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Psychologists have documented distinct patterns of psycholog-

ical and cardiovascular response during motivated performance

situations—situations that are goal-relevant to the performer, re-

quire instrumental cognitive responses, and are active rather than

passive (e.g., public speaking, sports competitions, test taking;

Blascovich & Mendes, 20 0 0 ). A growing body of research has

specifically focused on distinctions between two biopsychological

response patterns, challenge and threat, which are related to an

individual’s perception of situational and task demands (includ-

ing perceptions of danger, uncertainty, and required effort) rela-

tive to perceptions of one’s available resources to cope with these

demands ( Blascovich & Mendes, 20 0 0; Tomaka, Blascovich, Kelsey,

& Leitten, 1993; Tomaka, Blascovich, Kibler, & Ernst, 1997 ). Chal-

lenge is experienced when a person judges his/her coping re-

sources to meet or exceed the demands of the situation or task,

whereas threat is experienced when a person judges the situ-

ation or task demands to exceed his or her coping resources

( Blascovich & Mendes, 20 0 0; Tomaka et al., 1993, 1997 ). Chal-

lenge and threat states are associated with important outcomes,

like task performance. For example, when compared to individuals

experiencing challenge, individuals experiencing threat performed

worse on the math portion of the Graduate Record Examina-

tions (GRE) which is a test that measures quantitative reason-

ing, critical thinking, analytical writing, and verbal reasoning skills

( Jamieson, Mendes, Blackstock, & Schmader, 2010 ). Challenge and

threat states are also commonly observed during potentially stress-

ful interpersonal interactions. Individuals are more likely to expe-

rience threat when interacting with individuals who are higher in

social status ( Mendes, Blascovich, Major, & Seery, 2001 ), are from

a racial group other than their own ( Mendes, Blascovich, Lickel,

& Hunter, 2002; Blascovich, Mendes, Hunter, Lickel, & Kowai-Bell,

2001; Berry Mendes, Gray, Mendoza-Denton, Major, & Epel, 2007 ),

are socially stigmatized (such as having a visible facial birthmark;

Blascovich et al., 2001 ), or when their interaction partner violates

a known stereotype (such as speaking with an Asian male with a

southern accent; Mendes, Blascovich, Hunter, Lickel, & Jost, 2007 ). 

According to the biopsychosocial model (e.g., Blascovich &

Mendes, 20 0 0; Blascovich & Tomaka, 1996 ), challenge is associ-

ated with enhanced ventricular contractility (as measured by pre-

ejection period or PEP) and increased cardiac output (CO), as well

as decreased systemic vascular resistance (measured as total pe-

ripheral resistance or TPR) ( Blascovich & Mendes, 20 0 0; Dienstbier,

1989 ), a pattern of cardiovascular reactivity that should increase

blood flow to skeletal muscles and the heart, thereby supporting

greater motor activity. Threat, on the other hand, is associated with

no change or increases in systemic vascular resistance ( Blascovich

& Mendes, 20 0 0; Dienstbier, 1989 ), a pattern of cardiovascular re-

activity that reduces efficient and effective blood flow to periph-

eral blood vessels, and thereby provides poor or limited support

of increased muscle action. In the psychophysiological literature

( Tomaka et al., 1993, 1997; Mendes, Major, McCoy, & Blascovich,

2008; Jamieson, Nock, & Mendes, 2012; Quigley, Barrett, & Wein-

stein, 2002 ), challenge and threat have typically been indexed via

patterns of task-related change in pre-ejection period (PEP), heart

rate (HR or the inverse of HR, inter-beat interval or IBI), cardiac

output (CO) and/or stroke volume (SV), and total peripheral resis-

tance (TPR). 

In the decades since their scientific introduction, challenge and

threat have been used to understand psychological, behavioral, and

biological responses across many motivated performance domains,

particularly those involving social evaluation ( Mendes et al., 2001,

2002; Blascovich et al., 2001; Berry Mendes et al., 2007; Mendes

et al., 2007 ). However, the vast majority of this work has not ex-

amined challenge and threat at the individual level, focusing in-
tead on group comparisons between samples of individuals who

ither exhibit more threat-like versus more challenge-like sub-

ective experiences or more threat-like or challenge-like changes

n cardiovascular physiology. A recent meta-analysis on the ex-

sting empirical literature using this group-level approach found

table relationships between cardiovascular physiology and perfor-

ance, but these relationships were fairly weak ( Behnke and Kacz-

arek, 2018 ), suggesting there is still room for improvement in

redicting experience and behavior from physiological activity dur-

ng motivated performance contexts. A renewed focus on within-

ndividual comparisons may allow for the identification of poten-

ially important individual differences in physiological response

atterns that could better predict experience and behavior across

arying motivated performance contexts. 

In one exception to the commonly-used group-based approach,

uigley et al. (2002) investigated individual patterns of cardiovas-

ular responding across a series of motivated performance tasks

f increasing difficulty. In this experiment, participants completed

our mental arithmetic tasks, which required them to perform se-

ial subtractions aloud (e.g., “subtract sevens from the number

,746”) in the presence of an evaluator. Each iteration of the task

ncreased in difficulty by adding new elements of social evaluative

ressure as the experiment progressed. The experience of psycho-

ogical challenge and threat (as measured by self-reported stress

nd coping resources) were assessed before each task and cardio-

ascular physiological reactivity was measured before, during and

fter every task. Analyses revealed individual differences across

enders in terms of both cardiovascular reactivity and appraisals

f stress and coping. 

These findings provide a preliminary demonstration of the im-

ortance of examining individual-specific patterns of psychologi-

al and physiological responding during motivated performance, as

pposed to responses at the group-level. Adopting an individual-

ocused approach is also consistent with the idea that challenge

nd threat are malleable states that exist as opposing endpoints of

 continuum (as opposed to fixed, dichotomous states; Seery, 2013;

amieson et al., 2016 ). The appraisals of demands and resources as-

ociated with challenge and threat are posited to occur on a more

ubconscious or automatic level and to change dynamically over

ime as perceived demands or resources shift (see, Seery, 2013;

uigley et al., 2002 ). Given this, examining changes in patterns of

hysiological activity over time within individuals may provide a

ore nuanced means of predicting experience and behavior dur-

ng motivated performance contexts than static, aggregated mea-

ures taken at the group level. 

.1. Our contributions 

In the present study, we intend to extend the existing liter-

ture on physiological responding during motivated performance

n several ways. First, although previous research has investigated

oth within- and between-subject variability in responding dur-

ng affective events more broadly ( Wu & Parsons, 2011; Bozhkov,

eorgieva, Santos, Pereira, & Silva, 2015; Kim & André, 2008; Chen

t al., 2016 ), these innovations have not yet been leveraged in

he literature on physiological responding during motivated per-

ormance tasks where there is a scarcity of research examining

ariability in response patterns. The vast majority of the litera-

ure utilizing the biopsychosocial model, for example, has exam-

ned group-level differences in two specific physiological patterns

challenge vs. threat) within a single motivated performance con-

ext across stipulated groups (e.g., groups based on subject vari-

bles like race or gender, or based on an experimenter-defined

ondition). Here, to examine individual differences, we adopted an

pproach similar to Quigley et al. (2002) in which participants

ompleted a series of motivated performance tasks of increasing
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ifficulty. Then, changes in peripheral physiological responding

cross tasks within-individuals were examined–instead of examin-

ng a mean or aggregate level of physiological responding across

ndividuals, as is more typically done. We hypothesized that we

ould observe more individually-diverse patterns of peripheral

hysiological response during motivated performance than what

as been previously recognized. 

Second, we examined whether additional physiological vari-

bles could help distinguish individual differences in self-reported

esponding to motivated performance tasks of increasing diffi-

ulty. Recent studies examining physiological responding during

otivated performance from the biopsychosocial perspective have

ocused almost exclusively on cardiovascular responses during

otivated performance, without systematically investigating the

ossible utility of additional indices of peripheral physiological

ctivity for understanding biological responding in active coping

tress tasks. However, there are potential advantages to using ad-

itional multimodal information so that prediction accuracy can

e improved (for example, as in Chen, Tao, Huang, Miyasato, &

akatsu, 1998 ), and potentially also examine whether physiologi-

al variables beyond cardiovascular ones are useful in distinguish-

ng stress and coping experiences. To address this, in the present

tudy, we included a much broader range of peripheral physiolog-
ig. 1. The methodological framework of this study: (I) In the experiment phase, four men

hysiological data as well as self-report scores from participants. (II) Following a band-pa

ther modalities) with 50% overlap were used for segmenting the signals. (III) Two types 

eature matrix, where each row represented a feature vector of one participant. Then, we

nd class labels (specified based on the task difficulty level). (IV) A distance-based cluste

lassifier was trained for within and across group classification. 
cal measures than is typical in previous studies on challenge and

hreat, and used them as input to the proposed feature selection

nd classification algorithms. In addition to indices of cardiovascu-

ar responding that are typically investigated within this literature,

e also examined measures of facial muscle activity (including ac-

ivity in the corrugator supercilia and zygomaticus major muscle

roups), respiration, and electrodermal activity. A schematic of the

roposed study design, data pre-processing and data analysis is

hown in Fig. 1 . 

In the present investigation, we first focused on examining

ithin-individual variation in physiological activity during a series

f motivated performance tasks of increasing difficulty (i.e., with

ncreasing task demands over iterations of the task). It was hypoth-

sized that, within individuals, patterns of physiological respond-

ng would change as the task demands increased (Hypothesis 1).

hen, person-specific physiological features that best differentiated

ithin-individual physiological responding across tasks of varying

ifficulty were identified. Based on the existing literature from the

iopsychosocial perspective, one might assume that changes in car-

iovascular reactivity (i.e., PEP, IBI, CO, and TPR) would best distin-

uish physiological responding across tasks of varying difficulty for

ll individuals (as individuals likely move from feeling more chal-

enged to more threatened as task difficulty increases). However,
tal arithmetic tasks with increasing difficulty were conducted to collect multimodal 

ss filter and normalization, sliding windows (10s length for EDA and 5s length for 

of feature extraction approaches were applied to the segmented data to obtain the 

 selected top 40 features based on the mutual information between feature vectors 

ring algorithm was performed based on the selected subset of features, and SVM 
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emerging empirical and theoretical evidence suggests that men-

tal states, including emotional and motivational states, do not ap-

pear to have consistent and specific physiological ‘fingerprints’ in

the body across all individuals, but rather variability across indi-

viduals appears to be the norm (for a discussion, see Siegel et al.,

2018 ). Thus, here it was hypothesized that there would be differ-

ent groups (clusters) of participants, each of which share common

salient features that dominate this differentiation in physiological

responding across tasks (Hypothesis 2). That is, it was predicted

that not all participants’ physiological responses across tasks would

be best differentiated by the same small subset of cardiovascular

variables. A network analysis approach was then applied to char-

acterize these groups and investigate how the shared salient fea-

tures varied across groups. Finally, we hypothesized that post-task

self-reports of stress and perceived coping resources would be bet-

ter predicted using the shared salient features within each group

versus using the same set of physiological features for all indi-

viduals in the sample as a whole (Hypothesis 3). By leveraging

a data set with a larger set of peripheral physiological variables

than are typically used in the literature on motivated performance,

coupled with an individual difference-focused analytic strategy, we

hypothesized that we would reveal heretofore undetected patterns

of physiological change across active coping stress tasks of varying

difficulty that could then be used to more accurately predict stress

experience during motivated performance. 

In summary, our novel contributions in this work are twofold:

(1) examining the individualized differences in multimodal physi-

ological responses during motivated performance tasks with vary-

ing difficulties; and (2) identifying clusters of individuals that share

common physiological responses and performing group-level anal-

ysis of predicting self-reported judgments of challenge vs. threat

within each cluster. Such an approach enables us to identify pat-

terns in physiological responses to predict self-reported judgments

of motivated performance tasks with higher accuracy in each clus-

ter compared to an analysis that includes the entire sample popu-

lation in a single group. 

2. Materials and methods 

2.1. Participants 

260 participants were recruited from the greater Boston area to

participate in this experiment. Here, data from the 107 participants

(41 males, 65 females; 1 gender not reported) who had complete,

clean physiological data for all tasks and all minutes of the baseline

were used. The remaining 152 participants had data from at least

one physiological measure for at least 1 min of either the tasks or

baseline that was not usable (due to excessive movement artifact,

noisy signal caused by improper skin preparation or sensor place-

ment, etc.). Participants were required to be native English speak-

ers and were excluded if: they were currently taking any medi-

cations that would influence peripheral physiological activity, had

a history of mental illness or cardiovascular disease, or reported

consuming caffeine, alcohol, or tobacco within 24 h prior to the

experiment. All participants completed the mental arithmetic tasks

as part of a single 3-4-h experimental session in which they com-

pleted a series of other tasks and questionnaires not relevant to the

current investigation. The study was approved by the Institutional

Review Board at Northeastern University. 

2.2. Measures 

2.2.1. Physiological responding signals 

Electrocardiogram (ECG), impedance cardiogram (ICG), continu-

ous blood pressure (BP), respiration (RES), electrodermal activity
EDA), and measures of facial muscle activity over the corruga-

or supercilii (COR) and zygomaticus (ZYG) major muscle groups

sing facial electromyography (fEMG) were recorded. All physio-

ogical measures were sampled at 10 0 0 Hz using BioLab v. 3.0.13

Mindware Technologies; Gahanna, OH) via a BioNex 8-Slot chas-

is (Model 50-3711-08). Samples of filtered physiological data from

ne participant are shown in Fig. 2 . The filter settings for each bio-

ignal is later discussed in the Data Preprocessing section. 

ECG was obtained using pre-gelled Ag/AgCl sensors in a modi-

ed lead II configuration. ICG was acquired using a four-spot elec-

rode configuration (see Qu, Zhang, Webster, and Tompkins, 1986 )

sing pre-gelled Ag/AgCl electrodes. The inner (recording) elec-

rodes were placed on the participant’s chest: one at the base of

he neck at the top of the sternum and the other at the level

f the xiphisternal junction. The outer (source) electrodes were

laced along the midline on the participant’s back approximately

 cm above and below the inner recording electrodes (respectively,

oughly over the fourth cervical vertebrae and the ninth thoracic

ertebrae). The source electrodes passed a 4 mA, 100 kHz alter-

ating current across the thorax. BP was recorded continuously via

 Continuous Noninvasive Arterial Pressure monitor (CNAP Mon-

tor 500AT; CNSystems; Medizintechnik, AG, Austria). Continuous

ecordings were obtained from small cuffs placed on participants’

eft middle and pointer fingers, and these continuous readings

ere calibrated intermittently against an automated non-invasive,

lood pressure cuff around the participant’s right upper arm. The

ES signal was measured via a piezoelectric belt placed around the

ower-chest/upper-abdomen (Mindware Technologies; Model 50-

504-00). The EDA signal was recorded from the palmar surface

f the right hand with sensors on the thenar and hypothenar emi-

ences using disposable, Ag/AgCl (11 mm diameter; isotonic paste)

lectrodes (Biopac Systems, Inc.; Goleta, CA). fEMG measures were

btained via reusable Ag/AgCl electrodes (Mindware Technologies;

ahanna, OH) filled with an electrolyte gel and placed over the

ygomaticus major and corrugator supercilii muscle regions on

he right side of the participant’s face. A reference electrode was

laced in the middle of the forehead. 

.2.2. Procedure: mental arithmetic tasks 

Each participant completed a series of mental arithmetic tasks

s part of a single experimental session (see Appendix A for the

escription of the full experimental session), which typically lasted

etween 3 and 4 h, during which s/he completed a number of

ther tasks unrelated to the current investigation. Following elec-

rode placement, the participant was seated in a sound-attenuated

esting room in an upholstered chair. Immediately before com-

leting the series of mental math tasks pertinent to the cur-

ent investigation, the participant was connected to the contin-

ous blood pressure monitor, and the continuous readings from

he finger cuffs on the left hand were calibrated against a non-

nvasive reading taken from the cuff on the right arm. The par-

icipant then sat quietly alone in the testing room while resting

hysiological measures were recorded for 2 min ( Task 0 or Base-

ine). The participant was not informed prior to this baseline that

/he would be doing arithmetic tasks immediately following the

aseline. This was done to ensure that this resting baseline was

ot confounded with anticipatory stress related to the upcoming

asks. 

After the baseline, the participant was informed that s/he

ould complete a series of mental arithmetic tasks by speaking

erial subtraction answers aloud in front of an experimenter, who

ould record the answers. The participant was asked to work as

uickly and accurately as possible, and to refrain from comment-

ng on the task or his or her performance until all tasks were com-

lete. The participant then practiced by subtracting aloud from 90

y 3 s for 30 s and was encouraged to ask any questions about the
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Fig. 2. Samples of collected physiological signals after preprocessing. 

t  

c  

c  

M  

t  

7  

1  

b  

a  

t  

t  

a  

A  

n

 

e  

t  

b  

a  

t  

w  

i  

a  

b  

t  

t  

o  

F  

s  

“  

p  

c  

o  

p  

R  

r  

e

2

 

t  

a  

c  

f  

c  

o  

s  

t  

d  

f  

s  
ask instructions. Next, the participant rated how stressful the up-

oming task would be and how well s/he could cope with the up-

oming task on two 5-point scales (from 1 = Not at All to 5 = Very

uch). Immediately following these ratings, the first subtraction

ask began and the participant was asked to subtract from 725 by

 s for 1 min while an experimenter recorded the responses ( Task

) . Experimenters were trained not to provide any positive feed-

ack (e.g., no smiling or nodding) during the task. For the second

rithmetic task, the participant again subtracted aloud for 1 min,

his time from 847 by 6 s, 8 s, or 13 s with the goal of keeping

he serial subtractions moderately stressful for all participants by

djusting the task difficulty to their initial performance ( Task 2) .

gain, the experimenter recorded his or her responses, but gave

o feedback. 

The participant next was given a short (1 min) break to sit qui-

tly alone in the testing room, after which the experimenter re-

urned to the room, and the participant was told that there would

e one last math task, but that this time s/he would subtract from

 larger number and that the experimenter would inform the par-

icipant each time an incorrect response was given. These changes

ere meant to increase the stressfulness of the serial subtractions

n the final 2-min task. Before these subtractions, the participant

gain rated how stressful s/he thought the upcoming task would

e and how well s/he could cope with the upcoming task on

he same 5-point scales. The participant then was asked to sub-

ract from 4851 by 8 s, 12 s, or 17 s for 2 min (again depending
n performance during the first mental arithmetic task) ( Task 3) .

or these 2 min, the experimenter recorded the participant’s an-

wers and provided feedback each time s/he was incorrect (e.g.,

Incorrect. 4826”). Immediately following this final 2-min task, the

articipant rated how stressful the task was and how well s/he

oped during the task using the same 5-point scales. The ratio

f the two ratings (stress rating/coping rating) is defined as the

articipant’s self-reported experience of threat or challenge ( SR ).

atios greater than “1” indicate a threat experience, while self-

eport ratings of less than or equal to “1” indicate a challenge

xperience. 

.3. Hypothesis-driven models 

This section describes the methodologies that are used to test

he above listed three hypotheses. For the first hypothesis, we

im to formulate a classification problem to distinguish among 4

lasses/tasks and our aim is to identify subset of person-specific

eatures (salient patterns from the recorded measurements) which

ontribute significantly to the classification/separation across tasks

f varying difficulties. Then for Hypothesis 2, based on the person-

pecific features as identified in Hypothesis 1, we perform a clus-

ering based on graphical approach to identify sub-groups of in-

ividuals who share person-specific physiological features. Finally

or Hypothesis 3, based on the sub-groups identified in Hypothe-

is 2, we perform an analysis to investigate how the classification
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accuracy to distinguish between self-reported ratings of threat and

challenge experience varies within and across sub-groups. 

2.3.1. Problem formulation to test H1 

With the aim of finding the physiological features that best dif-

ferentiate a given individual’s pattern of bodily response across

tasks of varying difficulty, a classifier will be trained to differen-

tiate 4 classes ( T 0 = baseline, T 1 = Task 1, T 2 = Task 2, T 3 = Task 3)

for each participant. These features are also believed to be the

most experience-indicative features. For a given individual, i , let’s

extract M features from the available physiological signals collec-

tively to form feature vector F i = [ f i 
1 
, f i 

1 
, . . . , f i 

M 

] in each class of

{ T 0 , T 1 , T 2 , T 3 }. The objective is to find a subset of K i feature from F i

in which the classification accuracy when differentiating these 4

classes is more than a predefined accuracy threshold, T . 

2.3.2. Problem formulation to test H2 

To test this hypothesis, the objective is to find J clusters

(groups) of individuals, { C 1 ,…, C J } that share a common subset of

salient features in differentiating { T 0 , T 1 , T 2 , T 3 } classes, with a pre-

defined commonality measure greater than L . More specifically,

each participant is represented by a binary feature vector of size

F × 1 where F is the total feature size. In this binary vector if the

i th feature is significantly contributing to the classification of the 4

tasks/classes then a 1 is placed in the i th location; otherwise a 0 is

placed. To cluster the participants based on the similarity in the bi-

nary feature vectors, a graph was constructed by considering each

participant as a node and the Jaccard coefficient ( Jaccard, 1912 )

was considered as the connectivity measure between the binary

vectors. A connection is decided to exist between two nodes if the

normalized Jaccard coefficient between these nodes is above the

predefined commonality measure C = 0.5. 

2.3.3. Problem formulation to test H3 

To test this hypothesis, an inference model, T is defined to pre-

dict self-report ratings reported at the end of Task 3 using the

feature vector extracted from class T 3 . The self-report rating SR is

predicted in a binary fashion: SR > 1 for threat and SR ≤ 1 for

challenge. To predict the self-report ratings SR of the participants

in the cluster C j ,j ε[1, …, J ], T will be trained in the following struc-

tures and tested using a leave-one-out paradigm: 

(i) Training T i on the union of the K i feature subset of each par-

ticipant in the cluster C j and testing it across the participants

in the cluster C j . 

(ii) Training T ii on the union of the K i feature subset of each

participant in the cluster C j and testing it with the partici-

pants outside the cluster C j . 

(iii) Training T iii on the union of the K i feature subset of each

participant outside the cluster C j and testing it with the par-

ticipants in the cluster C j . 

(iv) Training T i v with all the features on all participants of C k ,

where k ε[1, …, J ] and testing the model with the partici-

pants from cluster C j . 

(iv) (v) Training T v on all feature set F and across all of the N

test participants, without any clustering and testing it with

all of the participants. 

2.4. Physiological data preprocessing 

In this section we explain the signal processing approaches

used for pre-processing of the recorded physiological signals for

the replicability of the proposed analysis. Specifically, we de-

scribe the filters used to remove noise and extract portions of
he data that are of interest. Physiological signals including Elec-

rocardiogram (ECG), Electrodermal Activity (EDA) and Electromyo-

ram (EMG) were processed using the Biosignal-Specific Process-

ng (Bio-SP) Tool developed at Augmented Cognition Lab (ACLab)

t Northeastern University ( Biosignal-Specific Processing (Bio-SP)

ool, 2018 ). The Bio-SP Tool extracts features on these signals

ased on the state-of-the-art studies reported in scientific litera-

ure ( Perez-Rosero, Rezaei, Akcakaya, & Ostadabbas, 2016; Pan &

ompkins, 1985; Bsoul, Minn, Nourani, Gupta, & Tamil, 2010; De

hazal et al., 2003 ; K. H. Kim, Bang, & Kim, 2004; Benedek & Ha-

lett, 2005; Tkach, Huang, & Kuiken, 2010 ). Processing of other sig-

als such as Blood Pressure (BP), Respiration (RES) and Impedance

ardiography (ICG) were also performed in MATLAB based on the

ecommendations suggested in scientific articles ( Tomaka et al.,

993, 1997; Young, 2001; Allen et al., 1990 ). In this section, the

re-processing steps are explained, and in the following sections,

he data segmentation and feature extraction of the signals are

laborated. 

An elliptic band-pass filter with cut-off frequencies of 5–45 Hz

as used for pre-processing of ECG signals. These cut-off frequency

alues were selected based on the power spectral density (PSD)

nalysis of the ECG signals. In addition, the elliptic filter was se-

ected to ensure that the amplitude of the signal peak points were

ot significantly suppressed by the filter ( Chavan, Agarwala, & Up-

ane, 2005 ). 

For the EDA signals, FIR low-pass filter with 0.5 Hz cutoff fre-

uency was used ( Figner & Murphy, 2011 ). An elliptic bandpass fil-

er with cutoff frequencies of 10–300 Hz was used for both the

OR and ZYG signals based on inspection of the power spectral

ensity of these signals ( De Luca, Gilmore, Kuznetsov, & Roy, 2010 ).

oreover, according to the power spectrum of the two fEMG sig-

als acquired for each participant, two notch filters at 60 Hz (COR)

nd 180 Hz (ZYG) were used. 

For continuous BP in adult humans, the recommended low pass

ut-off frequency is in the range of 10 0–20 0 Hz ( Young, 2001 ).

ased on the power spectral density analysis of the BP signals, a

ut-off frequency of 100 Hz was selected for the present sample.

he respiration signal (RES) and the transthoracic basal impedance

ignal (Z0) were filtered with a Butterworth low pass filter with a

0 Hz cut-off frequency. 

Finally, for the dz/dt signal derived from ICG, a 2nd order But-

erworth bandpass filter with cut-off frequencies of 0.75–40 Hz

as used based on the recommendation provided in BioLab soft-

are ( Knowledge Base Impedance Cardiography ). 

.5. Physiological data segmentation 

This section describes how the filtered recorded physiological

ignals are segmented before feature extraction. Data segments

orresponding to Task 1 ( T 1 ), Task 2 ( T 2 ), and Task 3 ( T 3 ) as well

s the baseline ( T 0 ) were obtained using time stamps provided in

 separate text file along with the physiological data file of each

articipant. In order to extract features from the segment corre-

ponding to each task, a 5-s sliding window was employed with

0 % overlap for 7 out of the recorded 8 signals. Since the EDA is

 slowly changing signal, a sliding window of 10 s duration and

0 % overlap was used. Each window was considered as an ob-

ervation belonging to a specific task and used for feature extrac-

ion. The same window size and overlap were used for both within

nd between individual classification problems. T 0 reduce variabil-

ty due to the differences in signal range from person to person

n the between-subject problem, the features extracted from each

aseline window were subtracted from the features of the corre-

ponding T window. 
3 
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.6. Feature extraction 

This sections describes the types of (signal-specific and signal-

ndependent) features (salient patterns/attributes) extracted from

ach segmented physiological recording. Several sets of features

ere extracted from the 8 recorded physiological signals and em-

loyed in a machine learning framework to initially differentiate

atterns of physiological responding across tasks of varying diffi-

ulty levels. The goal is to find the set of features that is most

elated to within-person changes in bodily responding across var-

ous task demands, as such a set of features should correspond

ith changes in subjective experience across tasks. The features

ncluded signal-independent and signal-specific features. Signal-

ndependent features included Fourier based features while signal-

pecific features included morphological features designed for ex-

racting information from the ECG, fEMG, EDA, BP, and ICG (dz/dt

nd z0) signals. No morphological features were extracted from

ES signal since applying morphology analysis on such signal will

esult in drastic decrease in the number of data windows that

an be obtained from each task. In particular, the task duration

aries from 30 to 60 s and RES signal requires around 25-s window

or the analysis to obtain representative morphological features for

hat window whereas the other signals require much smaller win-

ow and, therefore, will obtain higher number of data windows for

hich features can be extracted. 

.6.1. Signal-independent features 

The power spectrum was estimated for each window of data

sing Welch method ( Welch, 1967 ). The raw power spectrum val-

es were considered as features. For each window per signal, the

umber of features obtained from the power spectrum was re-

uced by calculating the average power over a narrow range of

requencies instead of using all the values as features. The aver-

ge of power spectrum values within a sliding window of specific

idth was considered as one feature. To calculate the same feature

or the next window, the original window was shifted by a value

qual to its width such that there was no overlap between consec-

tive windows and the average of that window was calculated and

o on. For ECG, RES, and ICG (dz/dt and Z0) signals, the average

ower was calculated using a window of 2.5 Hz width. Since the

P signal has higher bandwidth compared to the previously stated

ignals and considering the need to reduce the number of features,

 window of 5 Hz width was used. For the same reason, a window

f 10 Hz width was employed for the fEMG signals (COR and ZYG).

.6.2. Signal-specific features 

ECG features: In this paper, within each window, we calculated

everal measures associated with heart rate variability from the

CG signal, including mean R-R intervals (i.e., the time between

onsecutive heartbeats), standard deviation of R-R intervals, stan-

ard deviation of the differences between adjacent R-R intervals,

nd the square root of the mean of the sum of the squares of

ifferences between adjacent R-R intervals. Another set of calcu-

ated features included the number of pairs of adjacent R-R inter-

als where the first R-R interval exceeded the second R-R interval

y more than 50 ms as well as the number of pairs of adjacent

-R intervals where the second R-R interval exceeded the first R-R

nterval by more than 50 ms. Mean area of each QRS complex was

lso calculated in addition to its standard deviation. 

fEMG features: fEMG records the electrical activity produced by

keletal muscles in the face. The calculated features include the

tandard deviation, root mean square, and mean absolute value of

he fEMG signal within each window. In addition, features related

o the signal frequency were calculated, including the number of

ero crossings and the number of times the slope sign changed.

nother feature was the cumulative length of the fEMG signal
ithin the analysis window, which provides a measure of the com-

lexity of the signal. In addition, an estimate of the exerted muscle

orce ( f ) for a signal x of N samples ( Ekman, 1993; Tkach, Huang,

 Kuiken, 2010 ) was calculated as follows: 

f = e 
1 
N 

k = N ∑ 

k =1 

log x k 
(1) 

EDA features: Electrodermal activity (EDA) measures changes in

he skin’s electrical conductivity due to changes in the amount of

weat present in the eccrine sweat glands of the palm. The EDA

ignal is composed of two activities, tonic activity represented by

he slowly varying base signal and phasic activity or skin conduc-

ance responses (SCRs) which are represented by faster variations

n the signal. SCRs were detected by performing differentiation and

ubsequent convolution with a 20-point Bartlett window. In this

aper, we extracted the signal mean (mean skin conductance or

SC), the number of detected SCRs, the mean SCR duration, the

ean SCR amplitude, and the mean SCR rise-time (where rise-time

f an SCR is defined as the time between the initial rise and the

eak of an SCR). 

BP features: The characteristic points of the BP waveform within

ach heartbeat were used for calculating 5 signal-specific features.

n particular, diastolic pressure defined as the minimum signal

alue of each heartbeat and systolic pressure defined as the max-

mum signal value of each heartbeat were considered as features.

ressure values at both the dicrotic notch and the notch peak were

lso calculated. Mean arterial pressure (MAP), which represents

ean signal value for each heartbeat, was also calculated as a fea-

ure. 

ICG features: Features calculated from the Impedance Cardio-

ram included left ventricular ejection time (LVET), stroke volume

SV), cardiac output (CO), pre-ejection period (PEP) and total pe-

ipheral resistance (TPR). LVET is the time period in which blood

ows across the aortic valve, and PEP is the time period between

he electrical activity signaling the start of ventricular contraction

nd the onset of blood being ejecting into the aorta ( Goertz, 1995 ).

V is defined as the blood volume pumped by the heart per heart-

eat, and CO is the blood volume pumped by the heart per minute

 Maceira, Prasad, Khan, & Pennell, 2006 ). Finally, TPR represents

he resistance of the systemic circulation that carries oxygenated

lood from the heart to the body and returns deoxygenated blood

o the heart. These 5 variables were extracted from the shape char-

cteristics of ICG (dz/dt) signal combined with the corresponding

CG signal, ICG (Z0) signal, and BP signal. The methods used to ex-

ract these features are based upon the discussions provided in the

cientific literature ( Allen et al., 1990; Kelsey & Guethlein, 1990 ). 

.7. Feature selection 

This section describes the proposed methodology for selec-

ion person-specific features for the classification of 4 tasks with

arying difficulties, please see also Section 2.3.1 for Hypothesis

 formulation. In general, the objectives of feature selection are

hree-fold: improving the prediction performance of the predictors,

roviding faster and more cost-effective predictors, and providing

 better understanding of the underlying process that generated

he data. In this work, feature selection is related to the within-

ndividuals classification of bodily responses across the 4 tasks of

arying difficulty. Feature selection methods include filter, wrap-

er, and embedded methods. Compared to wrapper and embedded

ethods, the advantage of using filter methods is the low compu-

ational complexity ( Saeys, Inza, & Larrañaga, 2007 ). However, fil-

er methods assume that the features are independent. Therefore,

t is possible that these methods select redundant features. Due to

he high dimensionality of the feature vector (159 features), a filter

ethod was applied for feature selection. Filter methods include
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statistical hypothesis tests such as student-t test and Wilcoxon

Rank Sum test, however, these tests were not used in this study

since they can work only with binary classification problems. In

this work, mutual information, which is a filter method, was used

to select the most significant K i features out of the original fea-

ture vector F i = [ f i 
1 
, f i 

1 
, . . . , f i 

M 

] for participant i . Mutual informa-

tion measures the contribution of each feature to make a correct

decision and assigns each feature a score based on that contribu-

tion. In other words, the higher the score is, the higher the contri-

bution is of that feature to correct classification. In this paper, the

scores were normalized by the maximum score which corresponds

to the most significant feature. 

2.8. Task and self-report rating classification 

This section describes the classifier used in the proposed

methodology for within subject classification of 4 tasks with vary-

ing difficulties (Hypothesis 1), and within and across subgroups

self-report rating classification. In this paper, for both within-

subject task level classification, and across-subjects self-report rat-

ing classification, a support vector machine (SVM) classifier with a

linear kernel function was used to reduce computational expenses.

For across-subjects classification, the goal of SVM is to find an op-

timal hyperplane that discriminates individuals in terms of self-

report ratings ( SR > 1 versus SR ≤ 1) in the selected feature space.

The classification/prediction accuracy is defined as the percentage

of individuals correctly classified in the class they supposedly be-

long to. 

3. Results 

3.1. Testing Hypothesis 1: a within-individual analysis 

For each participant, a four-class classification problem has

been formulated to distinguish among Baseline, Task 1, Task 2, and

Task 3. Due to the limited number of samples per task, a leave-

one-out cross validation procedure was employed. In this classifi-

cation problem, mutual information was used to select the most

relevant {1, 5, 10, 20, . . ., 159} features and the corresponding ac-

curacy was calculated. Fig. 3 shows the average accuracy obtained

over 107 subjects at different numbers of selected features. It is

clear that using at least 40 features results approximately in the

same accuracy obtained using the whole feature set. Therefore, for

each participant, out of 159 possible features, K i = 40 features are
Fig. 3. The average accuracy obtained from 107 subjects plotted at different num- 

bers of selected features. 
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abelled as the most significant ones. This corresponds to features

ith normalized mutual information scores higher than 0.7, which

lso corresponds to a classification accuracy threshold of T = 95% . 

To explore the distribution of the top 40 subject-specific fea-

ures across individuals, a histogram showing the distribution of

he significant features across the 107 subjects included in the

tudy was plotted. The results are illustrated in Fig. 4 . This fig-

re shows that among 159 features, the top 20 features appeared

cross the majority of the individuals included features extracted

rom EDA, ZYG, and Z0 signals while the top 40 features included

ame features as well as features extracted from COR and BP sig-

als. Also, note that since the histogram is not uniform, it can

e concluded that some features appear in the top 40 feature list

ore frequently than the others. This also means that different in-

ividuals have different significant features in their top 40 list. 

.2. Testing Hypothesis 2: between subject clustering analysis 

We hypothesized that there are subgroups of people each of

hich share common subset of features in their top K i = 40 se-

ected features. Moreover, some individuals may not belong to any

roup. Finding these subgroups is a clustering problem. However,

ince the number of the clusters is unknown, and also since we

id not want to force any individual to be a part of a certain sub-

roup/cluster, graph theoretic approach was considered. 

As described in Section 2.3.2 , a binary feature vector of size

59 × 1 (the same size as F ) was formed and for each individ-

al, if the i th feature is in his/her top 40 features, we place 1

n the i th location of this binary feature vector. Otherwise, a 0 is

laced in that location. A connection is decided to exist between

wo nodes/participants based on the normalized Jaccard coefficient

etween these nodes. 

Fig. 5 shows the clustering patterns of participants in a graph,

here three major clusters can be visually observed. The nodes in

rey represent individuals that do not belong to any clusters. On

he other hand, some of the individuals may have very few con-

ections to one cluster, or some may have connections to multiple

lusters. In order to resolve these issues, the cumulative distribu-

ion function (CDF) for node degrees of the graph was computed,

ee Fig. 6 . Degree for each node is defined as the number of con-

ections that that node makes with the other nodes in the graph.

ased on the degree CDF, a threshold, ρ is identified such that (1)

f a node has connections only to one cluster with the connectiv-

ty degree of d , and if d > ρ , this node is determined to belong

o that cluster; (2) if a node has connections to more than one

luster (i.e., J clusters); assuming that the degree of connectivity to

ifferent clusters are defined as d 1 , d 2 ,..., d J , if max ( d 1 , d 2 ,…, d J ) >ρ ,

hen that belongs to the cluster with the maximum connectivity

egree. Here, we selected ρ = 5 which corresponds to degree CDF

igher than 0.7. 

By considering the most frequently observed significant features

or the participants within each cluster, shown in Table 1 where SD

nd SI represent signal-dependent and signal-independent features

espectively, it was found that the first cluster containing 15 par-

icipants was dominated by the signal-independent features from

he COR signal, while the second cluster containing 22 participants

as dominated by the signal-independent features derived from

he Z0 signal. Moreover, the third cluster with 37 participants was

ominated by the ZYG signal-independent features. These obser-

ations reveal that, for the majority of individuals in the present

tudy, changes in facial muscle activity were the most common

ignificant features for distinguishing within-person differences

n physiological responding across tasks of varying difficulty. For

he remaining approximately 1/3 of participants, changes related

o cardiac impedance (signal-independent features of the Z0 sig-

al) were the most common significant features, which is more
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Fig. 4. Distribution of the features appearing among the top Ki = 40 features across all individuals. (only features appeared in at least one-third of all individuals are shown, 

47 features out of total 159 features). Features associated with numbers are the power spectrum features. Numbers existing beside these features reflect the frequency range 

over which each feature is calculated. 

Fig. 5. The clustering structure of participants is represented in this graph by coloring. Each node represents a participant, and the connectivity is constructed based on 

commonality in the top 40 salient physiological features. Three major clusters are shown in yellow, green, and red, while the remaining nodes in gray represent individuals 

who do not belong to any cluster. 
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Table 1 

The top common significant feature sets across the 3 clusters and the isolated participants. The most com- 

mon feature set across a group is represented by “1”and the number increases as the feature set common- 

ality decreases. SD and SI stands for signal-dependent and signal-independent features, respectively. 

Significant features Corr SI Corr SD Zygo SI Zygo SD Z0 SI EDA SI BP SI BP SD ECG SD 

C1 (15 participants) 1 4 – – 2 3 – 5 –

C2 (22 participants) – – – 4 1 2 3 6 5 

C3 (37 participants) – – 1 4 2 3 – 5 –

Others – 3 – 4 1 2 – 5 –

Fig. 6. Cumulative distribution function for the degree of the graph constructed 

using 40 features. 
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consistent with the existing literature that posits features of car-

diovascular reactivity as most important for distinguishing biopsy-

chosocial states during motivated performance. 

3.3. Testing Hypothesis 3: a generalization analysis 

As described in Section 2.3.2 and based on the sub-

groups/clusters obtained in Section 3.2 , a classification/prediction

analysis was performed using the self-report ratings obtained at

the end of Task 3 to test our hypothesis that subjective experiences

of threat and challenge would be better predicted within each sub-

group than across the entire group of participants. The results are

presented in Table 2 . In this table, for each cluster the prediction

accuracy and prediction sensitivities results are presented for 4 dif-

ferent inference models, T , T , T , and T . Here, (a) T is the
i ii iii i v i 

Table 2 

The accuracy of different inference models T ’s to predict self-report rating SR for 3 

clusters. 

Inference models Sensitivity ( SR ≤ 1 ) Sensitivity ( SR > 1 ) Prediction accuracy 

C1: T i 76.33% 74.47% 75.46% 

C1: T ii 61.70% 35.70% 50.24% 

C1: T iii 87.50% 0.00% 46.67% 

C1: T i v 80.05% 0.30% 42.84% 

C2: T i 88.01% 71.18% 79.59% 

C2: T ii 64.52% 28.52% 49.04% 

C2: T iii 80.27% 14.31% 47.29% 

C2: T i v 91.48% 08.89% 50.19% 

C3: T i 69.15% 49.06% 60.00% 

C3: T ii 49.15% 43.99% 46.90% 

C3: T iii 67.45% 43.00% 56.30% 

C3: T i v 100.00% 02.88% 55.38% 

All: T v 84.79% 14.45% 53.53% 

4

 

r  

b  

f  

J  

f  

s  

c  

v  

c  

m  

c  

i  

T  
odel used to obtain within-cluster prediction results; (b) T ii is

he model used to analyze the generalization of the prediction ac-

uracy from one cluster to outside that cluster; and (c) the mod-

ls T iii and T i v are trained to investigate the generalization of the

rediction accuracy from outside one cluster to inside that cluster.

oreover, in Table 2 , the model T v evaluates the self-report rat-

ng prediction accuracy over the entire group without considering

ubgroup characteristics. 

In Table 2 , we observe that the best self-report rating pre-

iction accuracy was achieved when the prediction is performed

ithin each specific subgroup/cluster with participants sharing

ommon salient features (inference model T i ). It can be also ob-

erved that when the inference model is trained within a sub-

roup and applied to participants outside that subgroup (inference

odel T ii ), the prediction accuracy of that model outside the sub-

roup compared to the within-subgroup accuracy dropped signifi-

antly. Moreover, for a specific subgroup sharing common features,

hen an inference model is trained using these shared features

btained from the participants outside this subgroup and applied

o the participants inside the subgroup (inference models T iii and

 i v ), the generalization of this inference model from outside to

ithin the subgroup was very poor compared to within subgroup

rediction. Finally, when an inference model is trained within the

ntire sample of participants using the union of features shared by

his sample and applied to the entire sample (inference model T v ),

he self-report rating prediction accuracy is lower than the within

ubgroup prediction accuracy. In fact, the accuracy of T v ) is barely

bove chance (at 53.53%). Please also note that within-cluster in-

erence models clearly out-performed all other models in terms of

heir sensitivity for predicting subjective threat experiences (i.e., SR

 1), while sensitivity for predicting subjective challenge experi-

nces (i.e., SR ≤ 1) was consistently high across all inference mod-

ls (or, in some cases, lower for within-cluster inference models).

ne possible reason for this outcome would be that the physiolog-

cal features that best predict subjective challenge experiences are

imilar across all participants, while the physiological features that

est predict subjective threat experiences differ across participants

and thus drive the clustering results). 

. Discussion 

Classical (signal-specific) features of autonomic nervous system

esponding, particularly cardiovascular changes, have commonly

een used to identify threat and challenge during motivated per-

ormance (e.g., Tomaka et al., 1993, 1997; Mendes et al., 2008;

amieson et al., 2012; Quigley et al., 2002 ). In this study, it was

ound that measures of facial muscle activity (fEMG signals) and

ignal-independent features of the various peripheral physiologi-

al measures identified these biopsychosocial states during moti-

ated performance. To compare the present approach to one more

ommon approach in the existing psychophysiological literature on

otivated performance, we conducted a similar set of analyses ex-

luding both fEMG signals (COR and ZYG) as well as all signal-

ndependent features from the remaining physiological measures.

hat is, we conducted the analyses using only the commonly-
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tilized signal-dependent features derived from measures of auto-

omic nervous system activity. 

Using these ‘classical’ features, a maximum average accuracy of

8.23% was obtained when performing the within-individual anal-

sis (classification of within-person patterns of physiological re-

ponding across the tasks of varying difficulty), which represents

 reduction of approximately 9% in accuracy compared to our pri-

ary analyses with a more inclusive set of features. Moreover,

he common salient features for differentiating physiological re-

ponding across tasks were the same for all participants (i.e., all

articipants formed a single cluster) when testing H2 with only

he ‘classical features’. Finally, and most critically, prediction accu-

acy for post-task self-report ratings of threat and challenge based

n the union of salient physiological features for the full sam-

le was as low as 48%, and alternative inference models were not

ble to be tested using this approach since all participants formed

 single cluster when using only ‘classical’ physiological features.

he results of this alternative analysis highlight the advantages of

he analytic approach taken in the present paper: including ad-

itional measures of peripheral physiological activity (e.g., fEMG)

nd signal-independent features of physiological signals enables

he identification of heretofore unidentified individual differences

mong subjects in terms of which features of their physiological

ctivity differ most across tasks of varying difficulty. Moreover, by

aking into account these newly identified individual differences,

e are able to build inference models with substantially higher

redictive power for post-task self-reports of threat and challenge

xperience compared to inference models built ignoring these in-

ividual differences (See Table 2 ). 

Moreover, the individual differences revealed here lay bare a

umber of exciting avenues for future inquiry, particularly con-

erning the interpretation and generalizability of the observed pat-

erns of physiological activity. For more than half of the partic-

pants in the present study (approximately 2/3), it was found

hat the peripheral physiological features that best differentiated

ithin-person responding across a motivated performance task of

arying difficulty were derived from measures of facial muscle ac-

ivity. This is a novel discovery when compared to the existing

iterature and theory on understanding physiological responding

n motivated performance contexts. Using these fEMG-derived fea-

ures significantly improved the prediction accuracy of inference

odels for post-task self-report ratings of threat and challenge

xperience. One possibility to explore in future work is whether

acial muscle activity co-varies with performance on the mental

rithmetic tasks used here, such that people move their faces less

s the task difficulty increases and/or as they experience more

hreat relative to challenge because they are attempting less sub-

ractions per minute (i.e., they are speaking less). The present work

lso maximized the capacity to predict self-reports of the subjec-

ive experiences of threat and challenge collected after the tasks

ere completed. Much of the existing research has focused on

priori (i.e., pre-task) self-reports of threat and challenge as driving

ubsequent physiological activity. Thus, another interesting ques-

ion to explore in future work is whether facial muscle move-

ents are more relevant to post-task ratings of subjective expe-

ience than pre-task threat and challenge experiences, while the

pposite may be true of cardiovascular variables. This prediction

s consistent with previous work suggesting facial muscle activ-

ty, particularly in the corrugator supercilii and zygomaticus major

uscle groups measured here, may be more predictive of the sub-

ective experience of affective valence (i.e., feelings of pleasantness

nd unpleasantness) than are autonomic measures like cardiovas-

ular activity or EDA. 

Future work should also examine whether the specific salient

eatures identified here generalize to other active coping stressor

asks and experimental contexts. For example, to the extent that
EMG-derived features are particularly relevant in the mental arith-

etic task only because it involves speaking as part of task perfor-

ance, it is possible that changes in fEMG-derived features would

ot be as relevant in motivated performance contexts that did not

nvolve speaking (e.g., test taking, athletic performance). Moreover,

revious research has demonstrated that there are significant pat-

erns of cardiovascular adaptation to repeated active coping tasks

e.g., to completing multiple mental arithmetic tasks) ( Kelsey, Blas-

ovich, Tomaka, Leitten, Schneider, & Wiens, 1999; Kelsey, Blas-

ovich, Leitten, Schneider, Tomaka & Wiens, 20 0 0; Kelsey, Soder-

und, & Arthur, 2004; Kelsey, Ornduff, & Alpert, 2007 ) . As such,

ardiovascular adaptation over the series of mental arithmetic

asks may contribute to the overall pattern of results. Similarly,

n the present study, participants all completed numerous addi-

ional tasks prior to completing the mental arithmetic task, includ-

ng an acoustic startle task and an evocative picture and sound rat-

ng task, which may have themselves been perceived as stressful to

ome participants. As such, prior exposure to these additional po-

entially stressful tasks may have led to a pattern of cardiovascu-

ar adaptation that explains why commonly-studied cardiovascular

easures (e.g., CO, TPR) were not the most salient physiological

eatures in the present investigation of the motivated performance

ask. Moreover, individual differences in perceptions of the stress-

ulness of these prior tasks may be a critical driver of the observed

ndividual differences in salient physiological features during the

ental arithmetic task. Future work should examine these possi-

ilities. 

. Conclusion 

The present study examined multimodal physiological response

atterns across motivated performance tasks of varying difficulty,

ith the main focus on variation within and across individuals.

e designed a motivated performance task that varied in diffi-

ulty level, collected the multimodal peripheral physiological ac-

ivity of participants during these tasks, and performed an in-

ensive machine learning analysis. Results revealed that there are

alient physiological features which dominate the differentiation

f response patterns within-individuals across mental arithmetic

asks at varying levels of difficulty. Moreover, individual differences

ere observed in terms of which physiological features were most

alient for differentiating responding across tasks, and we identi-

ed three groups of individuals, each of which shared common

alient physiological features. Experimental results using machine

earning algorithms showed that the classification accuracy for pre-

icting post-task self-report ratings of challenge v. threat experi-

nces (i.e., the ratio of self-report stress and coping experiences)

as dramatically improved by considering an individually-tailored

et of physiological features compared to using an identical set of

eatures for all participants. Future work should enhance the un-

erstanding of temporal dynamics of physiological responding dur-

ng challenge and threat using multimodal data fusion and tempo-

al network approaches. 
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ppendix A 

Experimental Procedure: After reading and signing an informed

onsent document, the participant filled out brief questionnaires

ocumenting health and demographic information to ensure el-

gibility. An experimenter measured the participant’s height and
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weight and the participant was then instrumented for physiolog-

ical recordings as noted above. Following electrode placement, the

participant completed several tasks unrelated to the current in-

vestigation, including an acoustic startle reactivity task, an evoca-

tive picture and sound rating task, and a heartbeat detection task.

S/he was seated in a sound-attenuated testing room in an uphol-

stered chair throughout the experimental session. Immediately be-

fore completing the mental math task pertinent to the current in-

vestigation, the participant was connected to the continuous blood

pressure monitor, and the continuous measurement from the fin-

ger cuffs on the participant’s left hand was calibrated against a sin-

gle non-invasive reading taken from a cuff on the right arm. The

participant then sat quietly alone in the testing room while resting

physiological measures were recorded for 2 min. In order to ensure

this resting baseline was not confounded with anticipatory stress

related to the upcoming mental math task, the participant was not

informed that s/he would be doing a math task immediately after

the baseline. The participant then completed the mental math task

as described in Section 2.2.2 . Following this, all electrodes were re-

moved, the participant completed a set of questionnaires unrelated

to the present investigation, and was then debriefed and compen-

sated for participating. 
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