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Correspondence of functional connectivity
gradients across human isocortex, cerebellum,
and hippocampus
Yuta Katsumi 1✉, Jiahe Zhang2, Danlei Chen2, Nada Kamona2, Jamie G. Bunce3, J. Benjamin Hutchinson4,

Mathew Yarossi5,6, Eugene Tunik 6, Bradford C. Dickerson 1,7,8, Karen S. Quigley 2 &

Lisa Feldman Barrett2,7,8

Gradient mapping is an important technique to summarize high dimensional biological fea-

tures as low dimensional manifold representations in exploring brain structure-function

relationships at various levels of the cerebral cortex. While recent studies have characterized

the major gradients of functional connectivity in several brain structures using this technique,

very few have systematically examined the correspondence of such gradients across struc-

tures under a common systems-level framework. Using resting-state functional magnetic

resonance imaging, here we show that the organizing principles of the isocortex, and those of

the cerebellum and hippocampus in relation to the isocortex, can be described using two

common functional gradients. We suggest that the similarity in functional connectivity gra-

dients across these structures can be meaningfully interpreted within a common computa-

tional framework based on the principles of predictive processing. The present results, and

the specific hypotheses that they suggest, represent an important step toward an integrative

account of brain function.
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Research capitalizing on genetic, histological, and neuroi-
maging data has started to reveal brain structure-function
relationships at various levels of analysis within the cerebral

cortex1–16. A key technique in elucidating such relationships
involves mapping of high dimensional biological features to
lower-dimensional manifold representations, also known as
gradients17–19. Gradient mapping reduces the dimensionality of
complex data through dimensional decomposition techniques
(e.g., diffusion map embedding, principal component analysis).
When applied to brain connectivity data, the resulting gradients
can be interpreted as low-dimensional spatial representations of
continuous transitions in connectivity profiles within or across
brain structures.

Prior work computing connectivity gradients in humans has
most often used blood-oxygen-level-dependent (BOLD) func-
tional magnetic resonance imaging (fMRI) signal collected when
a person is not being deliberately probed with an external task—
so-called resting state or intrinsic activity20,21. Previous studies
using various analytical approaches have consistently identified a
few functional connectivity gradients within the isocortex8,22–25.
One gradient is referred to as the association-sensorimotor gra-
dient (also variably called a transmodal-unimodal gradient23) that
describes gradual changes in the similarity of connectivity profiles
from heteromodal regions typically considered part of the default
mode network6,26–28 to the primary sensory areas in the cerebral
cortex. This gradient has been recently characterized as a domain-
general axis along which several biological features are organized,
including cortical thickness, cerebral metabolism, intracortical
myelination, neuronal size and density, evolutionary cortical
expansion, embryonic development, and allometric scaling29,30.
We refer to another connectivity gradient that is consistently
identified in the literature as the representation-modulation gra-
dient (also variably called a multiple demand gradient7,31, which
is anchored at one end by regions part of the default mode,
somatosensory/motor, and visual functional networks and at the
other end by regions part of the attentional (i.e., salience, fron-
toparietal, and dorsal attention) networks. This gradient distin-
guishes isocortical ensembles involved in the representation of
higher-dimensional sensory signals (in somatosensory and visual
areas) or their compressed, lower-dimensional multimodal sum-
maries (in the default mode network)32 from those ensembles
that are thought to modulate these representations via processes
such as attention regulation, goal maintenance, and strategy
selection33–36. Another gradient that is commonly reported in the
literature on functional connectivity gradients distinguishes
between the visual network and the somatosensory/motor
network22,23,37. It is not immediately clear what this gradient
represents: It may suggest a segregation of exteroceptive sensory
systems, but it may also suggest a distinction in the properties of
sensory signals as they arise from different sensory surfaces (e.g.,
signal frequency, degree of compression when entering the iso-
cortex, or even proximity to visceromotor control)25.

Beyond the isocortex, research has also identified connectivity
gradients that characterize the functional organization of the
cerebellum38,39 and the hippocampus40–42 in terms of their
intrinsic connectivity within themselves or in relation to the
isocortex. However, the degree of correspondence between these
connectivity gradients, and their similarity to intrinsic con-
nectivity gradients within the isocortex, has not been well char-
acterized. The functional similarity of these gradients is suggested
by numerous studies describing coordinated learning systems
across the isocortex and cerebellum43,44, isocortex and
hippocampus45,46, and cerebellum and hippocampus47–51.
Despite this evidence, to our knowledge, no published study to
date has systematically examined how the functional organization
of the isocortex, the cerebellum, and the hippocampus relate to

one another in terms of macroscale connectivity gradients defined
based on BOLD fMRI data.

In the present study, we investigated the correspondence
between intrinsic functional connectivity gradients of the iso-
cortex, and of the cerebellum and the hippocampus in relation to
the isocortex, using BOLD fMRI data collected at wakeful rest
from healthy young adult participants in the Human Con-
nectome Project52 (HCP, n= 1003) as our primary sample, and
in participants in the Brain Genomics Superstruct Project53,54

(GSP, n= 1102) as our validation sample. In addition to group-
level replication, we also assessed the degree to which the cor-
respondence in functional connectivity gradients across structures
was replicable at the level of individual participants (see Sup-
plementary Information). Following prior published work on
functional connectivity gradients, we derived functional con-
nectivity gradients for each structure via diffusion map embed-
ding, an established technique to nonlinearly reduce the
dimensionality of large-scale connectivity data19,55. We chose to
analyze these data from the perspective of the isocortex to con-
sider how gradients of cerebellar and hippocampal connectivity to
the isocortex would align with connectivity gradients within the
isocortex, focusing on the three most dominant gradients in each
structure (see Methods).

Results
Characterization of functional connectivity gradients in the
cerebellum and the hippocampus in relation to the isocortex.
To characterize the functional organization of the cerebellum and
the hippocampus in relation to the isocortex, we first constructed
group average functional connectivity (i.e., Fisher Z-transformed
Pearson’s correlation coefficient) matrices between all cerebellar
voxels and all isocortical surface vertices, as well as between all
hippocampal voxels and all isocortical vertices, which were used
as inputs for diffusion map embedding. The resulting con-
nectivity gradients in this study, therefore, represented how
similar a given pair of voxels are within each non-isocortical
structure in terms of their patterns of connectivity with the iso-
cortex. This approach is consistent with that of published
work on the hippocampus and subcortical structures, in which
functional connectivity gradients were defined based on the
pattern of connectivity between these structures and the
isocortex7,39,41,42,56,57.

For intrinsic cerebellar-isocortical connectivity, the top three
gradients collectively explained >80% of the variance in the data,
with Gradient 1 accounting for >60%, Gradient 2 accounting for
>10%, and Gradient 3 accounting for >5% (Fig. 1a). Gradient 1
captured a bilateral dissociation of lobules I-IV, V, and VI and
lobule VIII from the posterior part of Crus I and II and the
medial part of lobule IX, whereas Gradient 2 distinguished
bilaterally the anterior parts of Crus I and Crus II along with
lobule VIIB from the rest of the cerebellar cortex. Gradient 3
revealed a more complex dissociation that does not clearly follow
the anatomical boundaries of cerebellar lobules, which was
anchored at one end by lobules I-IV, V, the posterior-most and
mid portions of Crus I and II, lobules VIIIB, IX, and X (Fig. 1b).

For intrinsic hippocampal-isocortical connectivity, the top
three gradients together explained >65% of the variance in the
data within each hemisphere, with Gradient 1 accounting for
>40%, Gradient 2 accounting for >15%, and Gradient 3
accounting for >8% of the variance in the data (Fig. 1c). Gradient
1 generally captured spatial variation in functional connectivity
along the longitudinal axis of the hippocampus, whereas the
variation captured by Gradient 2 was observed in both the
longitudinal axis and the medial-lateral axis. Gradient 3 revealed
a more nuanced mixture of these axes and was anchored at one
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end by the postero-lateral subregions and at the other by the
antero-medial subregions (Fig. 1d). To understand these
gradients in terms of hippocampal microstructure, we performed
Mann–Whitney tests (two-sided) to compare the distribution of
gradient values for the major hippocampal subfields: Subicular
complex, CA1–3, and CA4-dentate gyrus (CA4-DG), which were
derived from the established segmentation protocol58 (Fig. 1e).
This analysis revealed that Gradient 1 distinguished between the
CA subfields, with CA1–3 showing the highest values overall,
followed by subiculum and then the CA4-DG (p ≤ 0.001 for all
pairwise comparisons). Gradient 2 was anchored by the
subiculum at one end and CA1–3 and CA4-DG at the other
(p < 0.001), with no significant differences between CA1–3 and
CA4-DG (p ≤ 0.16). Gradient 3 likewise distinguished between
the three hippocampal subfield groups, with the CA4-DG
showing higher values than CA1–3 (p ≤ 0.004) and the subiculum
(p ≤ 0.001); CA1–3 also showed higher Gradient 3 values than the
subiculum (p ≤ 0.02).

Correspondence of functional connectivity gradients between
the isocortex, cerebellum, and hippocampus. Having char-
acterized the major functional connectivity gradients of the cer-
ebellum and the hippocampus in relation to the isocortex, we next
investigated the relationships between these gradients and func-
tional connectivity gradients identified within the isocortex. To
derive isocortical connectivity gradients, we constructed a subset
of the whole-brain group average functional connectivity matrix
with all isocortical vertices, which was used as input to diffusion
map embedding. From this analysis, we identified the top three

gradients that describe the maximal variance in explaining the
organization of functional connectivity patterns within the iso-
cortex. These isocortical gradients replicated those identified by
previous studies, with Gradient 1 distinguishing the default mode
and frontoparietal networks from the exteroceptive sensory (e.g.,
somatosensory, visual) as well as salience networks, Gradient 2
distinguishing the visual network from the somatosensory/motor
network, and Gradient 3 distinguishing the default mode and
exteroceptive sensory networks from the frontoparietal and sal-
ience networks23,25 (Supplementary Fig. 1).

Next, we calculated intrinsic functional connectivity maps for
each of these structures weighted by their voxel-wise gradient
values, using the same procedure as published work25,39,59. For
each cerebellar and hippocampal gradient, this procedure yielded
an isocortical map characterizing the variability in isocortical
functional connectivity along a given non-isocortical gradient
(Fig. 2a). We then quantitatively assessed the degree of spatial
correlation between these gradient-weighted functional connec-
tivity maps and isocortical connectivity gradients by computing
vertex-wise Spearman’s rank correlations, while controlling for
spatial autocorrelations and statistical significance assessed via
spin permutation tests60 (Fig. 2b). This analysis revealed that
isocortical Gradient 1 showed the strongest spatial correspon-
dence with the weighted connectivity maps of cerebellar Gradient
1 (ρ= 0.81, pspin ≤ 0.001) and of hippocampal Gradient 2
(ρ= 0.66, pspin ≤ 0.001) compared with the other gradient-
weighted connectivity maps of these non-isocortical structures.
In contrast, isocortical Gradient 3 showed the strongest
correspondence with the weighted connectivity maps of cerebellar
Gradient 2 (ρ= 0.89, pspin ≤ 0.001) and of hippocampal Gradient

Fig. 1 Functional connectivity gradients of the cerebellum and the hippocampus in relation to the isocortex in humans (n= 1003). a The scree plot
illustrates the proportion of variance explained by each of the ten functional connectivity gradients derived from intrinsic connectivity between the
cerebellum and the isocortex. The flatmap as a reference of the cerebellar lobules was reproduced from ref. 38 with permission. b The three most dominant
gradients of cerebellar-isocortical connectivity. c The scree plot illustrates the proportion of variance explained by each of the ten functional connectivity
gradients derived from the intrinsic connectivity between the isocortex and the hippocampus (top). A figure illustrating the subfields in the right
hippocampus (red=CA1–3, blue= CA4-DG, green= subiculum) was reproduced from ref. 58 with permission. d The three most dominant gradients of the
hippocampal-isocortical connectivity. e The ridge plot depicts the distribution of gradient values per hippocampal subfield group.
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1 (ρ= 0.71, pspin ≤ 0.001) relative to the other weighted
connectivity maps of these structures.

To further clarify the relationships between functional
connectivity gradients across structures, we additionally per-
formed conventional seed-based analyses to estimate cerebello-
isocortical and hippocampo-isocortical functional connectivity
using discretized functional connectivity gradients of each
structure as seed regions of interest. Here, each cerebellar,
hippocampal, and isocortical functional connectivity gradient
derived from the same group average connectome data was first
split into 20 spatially-discontiguous bins based on the percentile
ranks of vertex-/voxel-wise gradient values. We then calculated
bin-to-bin functional connectivity for each pairwise combination
of the three structures. Specifically, for each pair of non-
isocortical and isocortical gradients, we calculated pairwise
functional connectivity based on 20 non-isocortical bins and 20
isocortical bins and examined the magnitude of isocortical
connectivity changes along a non-isocortical gradient. If there
exists a one-to-one relationship in functional connectivity
between a given pair of non-isocortical and isocortical gradients,
we expect that the bins anchoring the corresponding ends of the

same gradient would be maximally correlated with one another.
To test this idea, we first quantified the magnitude of functional
connectivity between each non-isocortical gradient bin and 20
isocortical gradient bins. We then computed a single Pearson’s
correlation coefficient based on these 20 functional connectivity
estimates and bin indices (1–20) along an isocortical gradient to
represent the pattern of isocortical functional connectivity for
each non-isocortical gradient bin. Once computed for each non-
isocortical gradient bin, we calculated the correlation coefficient
between the magnitude of isocortical functional connectivity and
bin indices (1–20) along a non-isocortical gradient; this
procedure yielded one Pearson’s correlation coefficient that
quantifies the strength of the linear relationship between a given
pair of non-isocortical and isocortical gradients based on
functional connectivity. This analysis revealed results largely
consistent with the analysis of gradient-weighted functional
connectivity discussed above, demonstrating that differences in
functional connectivity between positions along isocortical
Gradient 1 are most strongly associated with differences in
functional connectivity along cerebellar Gradient 1 and hippo-
campal Gradient 2, whereas connectivity differences along

Fig. 2 Correspondence between non-isocortical and isocortical functional connectivity gradients. a Gradient-weighted functional connectivity maps were
calculated by multiplying voxel-wise isocortical functional connectivity maps of the cerebellum (or hippocampus) by cerebellar (or hippocampal)
connectivity gradient values. The resulting surface maps thus characterize the topography of the isocortical functional connectivity variation that each non-
isocortical gradient represents. b Spatial correspondence between each pair of a gradient-weighted connectivity map and an isocortical connectivity
gradient was assessed by Spearman’s rank correlation; p values were computed while controlling for spatial autocorrelation via spin permutation tests60.
c Based on the percentile ranks associated with voxel-wise gradient values, each non-isocortical and isocortical gradient was discretized into 20 spatially
non-overlapping bins. These bins were used to compute functional connectivity between each unique pairwise combination of gradient bins across
structures. For each non-isocortical gradient bin, Pearson’s correlation coefficient was calculated between isocortical gradient bin indices (1–20) and
functional connectivity values associated with them, thus yielding a single correlation coefficient per non-isocortical bin. In the next step, Pearson’s
correlation coefficient was calculated between non-isocortical gradient bin indices (1–20) and these isocortical correlation coefficients. This procedure,
therefore, resulted in one correlation coefficient for each pair of non-isocortical and isocortical gradients, shown here in each panel, representing the extent
to which these gradients correspond to one another in terms of functional connectivity. All p values are based on two-sided hypothesis testing. For each
non-isocortical gradient, the strongest correlation is shown in bold font.
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isocortical Gradient 3 are most strongly associated with
connectivity differences along cerebellar Gradient 2 and hippo-
campal Gradient 1 (Fig. 2c).

Following the same analytical procedure, we additionally
investigated the relationships between cerebellar and hippocam-
pal connectivity gradients. Our hypothesis was that a pair of
cerebellar and hippocampal gradients that correspond to the
same isocortical gradient would also show the strongest
correspondence with each other. Confirming this hypothesis,
we found that cerebellar Gradient 2 and hippocampal Gradient 1,
both of which corresponded most strongly to isocortical Gradient
3, showed a stronger spatial correlation in gradient-weighted
functional connectivity maps as well as stronger linear relation-
ship in seed-based functional connectivity with each other; a
similar pattern of results was observed with cerebellar Gradient 1
and hippocampal Gradient 2, which corresponded most strongly
to isocortical Gradient 1 (Fig. 3).

Group-level replicability of the correspondence in functional
connectivity gradients. To validate the pattern of results obtained
within the discovery sample, we performed the same set of ana-
lyses using an independent sample of healthy young adults
(n= 1102). Overall, the topography of functional connectivity
gradients of the isocortex, the cerebellum, and the hippocampus
was similarly observed across samples, although some differences
in the distribution of gradient values were noted in higher-order
gradients (Supplementary Figs. 2, 3). As observed in the discovery
sample, hippocampal Gradient 1 primarily distinguished between
the CA subfields, with CA1–3 showing higher gradient values
compared with both the subiculum and CA4-DG (p’s ≤ 0.001).
Hippocampal Gradient 2 also distinguished the subiculum from
CA1–3 (p ≤ 0.001), whereas the difference between the subiculum
and CA4-DG was not observed (p ≤ 0.84). Importantly, the cor-
respondence in functional connectivity gradients across structures
as examined by gradient-weighted functional connectivity maps
and conventional seed-based analyses of functional connectivity
via gradient bins both demonstrated the pattern of results

consistent with those obtained with the discovery sample above
(Supplementary Figs. 4, 5). These results strongly suggest that the
observed results are robust to variations in data acquisition
parameters and preprocessing methods.

Single-participant replicability of correspondence in functional
connectivity gradients. Finally, we assessed the degree to which
the correspondence in functional connectivity gradients observed
using group average data was replicable at the level of individual
participants. To this end, we performed seed-based functional
connectivity analysis as described above using group-defined
gradient bins (Fig. 2c) but separately for each individual partici-
pant in the discovery sample. As a measure of single-participant
replicability, we computed the percentage of participants whose
pattern of seed-based functional connectivity was concordant
with the corresponding group-level analysis. For instance,
regarding cerebellar Gradient 1 and its association with isocortical
gradients (Fig. 2c, top row), each participant had to exhibit
maximal correlation in functional connectivity between cerebellar
Gradient 1 and isocortical Gradient 1 compared with the other
isocortical gradients for this participant to be identified as
showing the pattern consistent with the group-level effect. This
analysis revealed that the pattern of correspondence in functional
connectivity gradients at the group level was overall replicable in
the majority of our individual participants, although the extent of
single-participant replicability varied across pairs of structures
(Supplementary Table 1).

Discussion
Accumulating evidence suggests that the organization of the
isocortex8,22,23,25,61–65, the cerebellum38,39, and the
hippocampus7,40–42,66 can be described with multiple gradients of
functional features that map onto structural features in the
human brain. In the present study, analyses of two large datasets
(N > 2000) replicated two gradients identified by published
research describing cerebellar and hippocampal functional con-
nectivity to the isocortex38,42, and additionally revealed the

Fig. 3 Correspondence between cerebellar and hippocampal functional connectivity gradients in relation to the isocortex. a Each panel represents the
spatial association between gradient-weighted functional connectivity maps of the cerebellum and hippocampus (see Fig. 2a). b Results of seed-based
functional connectivity analysis based on gradient bins in a given pair of cerebellar and hippocampal functional connectivity gradients in relation to the
isocortex. All p values are based on two-sided hypothesis testing. For each non-isocortical gradient, the strongest correlation is shown in bold font.
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topography of the third gradient in each structure that, to our
knowledge, has not previously reported in the literature. We first
discuss the results in terms of prior published evidence that
characterizes the functional organization of one (non-isocortical)
brain structure in terms of its connectivity profiles with the
isocortex7,39,42,57,67, and then suggest that the corresponding
gradients of functional connectivity might be understood as
dominant functional organizing principles within a common
computational framework. These results, and the specific
hypotheses that they suggest, represent an important opportunity
to build an integrative account of brain function.

Isocortical Gradient 1 (association-sensorimotor) primarily
distinguishes between heteromodal regions part of the default
mode network and the primary sensory cortical areas. Cerebellar
Gradient 1, which showed strong correspondence to this iso-
cortical gradient, has been similarly characterized as a gradual
transition from areas involved in non-motor (i.e., cognitive,
social, and emotional tasks) to those implicated in motor
function38. When the organization of intrinsic functional network
connectivity is considered38,68, cerebellar Gradient 1 is anchored
at one end by the default mode and frontoparietal control net-
works and at the other end by the somatosensory/motor and
salience networks, in a manner that is strongly similar to iso-
cortical Gradient 1. Hippocampal Gradient 2, which also showed
the strongest correspondence to this isocortical gradient, revealed
a dissociation along the medial-lateral axis that differentiated the
subiculum from the CA subfields. This result is in line with prior
evidence characterizing distinct hippocampal subfields with var-
iation in connectivity, computational roles, and myeloarchi-
tectural maturation69–72. It has been shown that the subiculum
exhibits stronger functional connectivity with the default mode
network than the other subfields, whereas CA1–3 shows stronger
connectivity with the somatosensory/motor and visual
networks42, consistent with the observed correspondence in
connectivity gradients.

Isocortical Gradient 3 (representation-modulation) distin-
guishes cortical areas as part of the default mode and primary
sensory areas from functional networks such as the frontoparietal,
salience, and dorsal attention networks. Cerebellar Gradient 2,
which showed strong correspondence to this isocortical gradient,
has been similarly interpreted as reflecting differences in atten-
tional modulation, specifically in relation to task-focus38 that is
required during tasks involving higher cognitive load73. This
pattern is also consistent with prior work descriptively demon-
strating that cerebellar Gradient 2 is associated with preferential
connectivity with the default mode and somatosensory/motor
networks at one end and the frontoparietal and salience networks
at the other38,68. Hippocampal Gradient 1, which also showed the
strongest correspondence to this isocortical gradient, has been
described as capturing variation in functional connectivity along
its longitudinal axis40–42, consistent with evidence identifying
gradual changes in anatomical connectivity, gene expression, and
electrophysiological response properties along this axis66,74,75.
Prior work has identified the largest difference in intrinsic func-
tional connectivity between the anterior and posterior subregions
with respect to the frontoparietal and salience networks, with the
posterior hippocampus showing stronger positive connectivity
with these networks, and the default mode and somatosensory/
motor networks at the anterior end42.

Isocortical Gradient 2, cerebellar Gradient 3, and hippocampal
Gradient 3 require future research to clarify their possible func-
tions. Cerebellar Gradient 3 appears to be anchored at one end by
the frontoparietal and somatosensory/motor networks and at the
other end by the default mode and salience networks. The default
mode and salience networks are thought to constitute an intrinsic
brain system for allostasis (i.e., predictive regulation of an

animal’s body and its needs)59,76,77. It is, therefore, possible that
this third gradient represents an axis of skeletomotor vs. viscer-
omotor signals in the cerebellum, although these two signals are
likely not independent of each other78–80. Hippocampal Gradient
3, which revealed a more complex topography along both the
longitudinal and medial-lateral axes, also distinguishes between
two of the hippocampal subfield groups. However, slight differ-
ences in the topography of this gradient were noted between the
discovery and validation samples, suggesting that it may be sen-
sitive to methodological variability. The two datasets examined in
the current study, although similar in size, varied in numerous
parameters associated with fMRI data acquisition (e.g., multi-
band vs. single-band slice acquisition, spatiotemporal resolution
of acquired images, number of runs), which may interact to
influence the characteristics of BOLD signal and derivatives. In
the context of overall similar results, prior studies of functional
connectivity parcellation have also noted distinct topographical
variability between the HCP and GSP datasets81. More research is
needed to fully characterize hippocampal gradients; the use of
high-field (e.g., 7 T) functional imaging would be especially useful
in clarifying the microstructural properties of the hippocampus
that each hippocampal connectivity gradient may be related to.

Importantly, the correspondence of functional connectivity
gradients across these structures was largely replicable at the level
of single participants, although the extent of this replicability also
varied across structure pairs and as a function of the gradient
order. To our knowledge, the current study is among the first to
examine individual differences in the degree of correspondence in
connectivity gradients. However, several studies have identified
individual variation in the organization of functional connectivity
gradients across participants and that this variation was predictive
of various aspects of cognition in both healthy and clinical
populations22,37,56,82. Extending this line of work, future studies
might investigate how variation in gradient correspondence
relates to individual differences in cognition and behavior.

The evidence of gradient correspondence may have impor-
tant implications for clarifying the computational mechanisms
of functional coordination among the isocortex, the cerebellum,
and the hippocampus. In our recent work, we proposed that
these two large-scale functional gradients can be interpreted as
being an integral part of the intrinsic neural architecture sup-
porting the implementation of predictive processing in the
brain, including allostasis25,59. Below, we sketch this inter-
pretation of the observed correspondence in functional con-
nectivity gradients across structures with links to a clear
theoretical formulation of predictive processing as an over-
arching computational framework. It is important to acknowl-
edge upfront that empirical findings reported herein were based
on interregional similarity in low-frequency fluctuations of
BOLD signal at rest. By definition, the observed pattern of
correspondence in functional connectivity gradients by itself
cannot be taken as direct evidence for the flow of signals within
a structure or across structures. Prior work has shown, for
example, that the topography of brain states captured by hidden
Markov modeling of resting fMRI data resembles different ends
of functional connectivity gradients, suggesting that these gra-
dients may be driven in part by the states occurring at rest83.
These states are associated with structural architecture84, so this
finding is not inconsistent with our hypothesis. Moreover, it
was precisely because of the structural and other biological
features that characterize isocortical Gradient 1 that we ori-
ginally hypothesized its role in predictive processing76,77,85–87.
The evidence of coordinated gradients builds on these original
ideas to suggest hypotheses about the domain-general compu-
tations that may be associated with functional connectivity
gradients. Future research needs to directly test this

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04796-0

6 COMMUNICATIONS BIOLOGY |           (2023) 6:401 | https://doi.org/10.1038/s42003-023-04796-0 | www.nature.com/commsbio

www.nature.com/commsbio


computational hypothesis regarding information flow using
techniques that allow for causal inference.

Predictive processing is emerging as a powerful neurocompu-
tational hypothesis that accounts for diverse psychological and
biological functions subserved by a brain87–90. To date, predictive
processing hypotheses have been offered to describe the com-
putational capacities of several structures within the vertebrate
brain, including the cerebral cortex in general76,77,85,86,88,91–93,
the hippocampus94–97, and the cerebellum43,98–100. A variety of
specific computational proposals abound, but they are generally
united by three components that are thought to be implemented
in a hierarchical arrangement in the brain’s architecture: (1)
prediction signals that the brain generatively constructs using
memory—or alternatively, an internal model101; (2) prediction
errors that learn the differences between signals carrying sensory
information predicted by the brain and sense data originating
from the sensory surfaces of the body; and (3) precision signals
that adjust the strength and durability of (1) and (2)102,103.
Prediction errors are potential teaching signals, but their capacity
to update predictions is thought to depend on how they are
weighted by precision signals, which are interpreted as the pre-
dicted value of the allostatic information they will provide, or
salience76,104. Prediction signals are also thought to be weighted
by their estimated value to explain the incoming sense data,
which may correspond to their estimated prior
probabilities76,102,103. Predictive processing reduces uncertainty
as an animal moves around in an ever-changing but only partly
predictable world. Learning accumulates as an internal model of
the animal’s body in the world by which the brain’s top-down
predictions emerge and implement allostasis and from which
movements and perceptions arise, all of which can be achieved in
a metabolically efficient manner59.

It is hypothesized that the cytoarchitectural properties of the
isocortex support the flow of prediction and prediction error
signals (also referred to as feedback and feedforward
signals1,2,105 as discussed in refs. 59,76,87) based on laminar
development: Prediction signals are hypothesized to flow from
deep layers of less granular areas (e.g., agranular, limbic cortices
without layer IV) to the superficial layers of dysgranular cortices
(e.g., where layers II and III are differentiated and layer IV is
rudimentary); from the deep layers of dysgranular cortices to
the superficial layers of granular (six-layered) cortices (e.g.,
eulaminate cortices with well-defined layer IV and upper lay-
ers); and from the deep layers of eulaminate cortices to the
superficial layers of koniocortex (with the most well-developed
layer IV and upper layers, e.g., primary visual cortex). Con-
versely, prediction error signals are hypothesized to flow from
superficial layers of more granular cortices to deep layers of less
granular cortices. As prediction error signals flow from sensory
regions (whose upper layers contain many smaller pyramidal
neurons with fewer connections) to limbic and other hetero-
modal regions in the frontal cortex (whose upper layers
contain fewer but larger pyramidal neurons with many more
connections), it is compressed and reduced in dimensionality30.
A growing number of experimental studies have also
verified signal flow or behavioral effects that are consistent with
these hypotheses - e.g., evidence from electrophysiological
recordings suggests prediction signal ensembles oscillate syn-
chronously in the alpha and beta frequency bands, whereas
prediction error signals oscillate in the higher-frequency gamma
range92,106,107.

The cytoarchitectural gradient described above is overall
topographically consistent with the isocortical association-
sensorimotor functional gradient, suggesting its role in support-
ing the flow of prediction and prediction error signals. At the
association end, the regions within the default mode network are

thought to construct highly compressed multimodal representa-
tions, which enable the initiation of prediction signals guiding
motor actions and making perception possible76,90,108,109. The
topographical features of the default mode network may enable
these computations, as cortical regions part of this network are
maximally divergent from systems including primary exter-
oceptive sensory areas23,110. The frontoparietal network is
hypothesized to play a major role in (1) estimating the precision
of prediction signals by suppressing those with weaker priors and
(2) creating and maintaining prediction signals longer than it
takes to process incoming prediction errors, when necessary76,90.
This hypothesis is consistent with available evidence showing that
one of the frontoparietal network’s subnetworks acts as an
extension of the default mode network to regulate complex
introspective processes111. It is also in line with current evidence
that these two networks exhibit longer timescales of cortical
processing than the other cortical networks64,112.

At the sensorimotor end, exteroceptive sensory networks
process signals that correspond to low-level sensory predictions
that have been decompressed (as probabilistic inferences) from
the compressed multimodal summaries in the association regions.
We hypothesize that all cortical neurons process signals that
continually confirm or refine the prediction signals they receive
(i.e., prediction errors)113. The prediction errors at the sensor-
imotor end are closer in dimensionality to the sensory signals in
the periphery, while the prediction errors at the association end
constitute the compressed multimodal summaries of those lower-
level signals.

The salience network is thought to estimate the precision of
prediction errors by tuning the gain on these signals as they
propagate from the body’s sensory surfaces, representing con-
fidence in the reliability and quality of incoming sense data and
their predicted relevance for allostasis. It is, therefore, possible
that this network helps the brain adjust its internal model to the
body’s energetic conditions76. This hypothesis is in line with
other views of salience network function that emphasize its role in
both attention regulation36,114–116 and multisensory
integration27,117. The representation-modulation gradient in the
isocortex, then, might be interpreted as an axis of the functional
organization that differentiates ensembles associated with the
representation of prediction and prediction error signals (i.e.,
anchored in nodes of the default mode and sensory networks)
from those involved in the implementation of attentional mod-
ulation to set the precision of these signals (with nodes from the
frontoparietal and salience networks).

There are also accounts of brain structure-function corre-
spondence that are complementary to predictive processing
hypotheses and consistent with the current findings. For example,
research in comparative neuroscience has linked evolutionary
changes in general brain-scaling functions118 to expanded asso-
ciation cortices in humans when compared with other primates,
including other great apes119,120. This expansion potentially
allows for increased information compression and dimensionality
reduction, suggesting the possibility that human brains are cap-
able of multimodal summaries characterized by greater
abstraction76,121. This perspective has been integrated into the
predictive processing account59,76, but requires a further
empirical test.

The observed correspondence in functional connectivity gra-
dients across the isocortex, cerebellum, and hippocampus can be
used as a starting point for developing a unified, integrative view
of brain function, building upon prior work investigating the
computational capacities of these structures based on the prin-
ciples of predictive processing. Although speculative, we hypo-
thesize that the isocortex, cerebellum, and hippocampus might
integrate over the same signals, but emphasize and/or construct
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different features to modulate one another as they construct
prediction, prediction error, and precision signals in the service of
allostasis, owing to their extensive connectivity with one another
and with the subcortical structures implicated in the processing of
these signals59.

It has been traditionally thought the cerebellum estimates the
sensory state of the body by predicting the consequences of motor
commands43,44,100, possibly as a means to compensate for delays
in sensory feedback122,123. In visual perception, the cerebellum is
thought to be critical for predicting incoming sensory informa-
tion based on sequence detection and updating predictions based
on the statistics of the sensory environment124–126. Extending
these accounts, we hypothesize that the cerebellum computes
sensory prediction error signals (and perhaps predicts the sensory
prediction errors within the isocortex) to adjust signals of various
cortical ensembles faster than isocortical sensory prediction error
signals can be computed59.

The cerebellum may also be involved in estimating the preci-
sion of isocortical sensory prediction errors. During motor
learning, the brain controls error sensitivity (i.e., the extent to
which the brain changes the motor commands in the trial fol-
lowing an error) by learning relatively more from small and
consistent errors than from larger and variable ones127,128. This
learning mechanism depends critically on the memory of errors
that accumulate during training, which exists independently of
two traditional forms of motor memory (memory of perturba-
tions and of actions)127. Although motor learning can occur on
different timescales with different error sensitivities129, the
memory of errors is thought to exert its influence through the
error sensitivity of the fast learning process127. Therefore, an
additional possibility is that the cerebellum rapidly estimates the
reliability of sensory prediction errors in the isocortex, conveying
this information to parts of the isocortex (e.g., the premotor areas
such as the anterior mid-cingulate cortex within the salience
network) where it is further used to update precision estimates
about sensory prediction error signals.

The hypothesis that the cerebellum can exert rapid modulation of
signals in the isocortex via coordinated functional gradients is further
supported by available microanatomical and connectivity evidence.
The majority of cerebellar neurons are granule cells, which can
generate action potentials that are relatively short-lived and at much
higher frequencies than neurons in the cerebral cortex122. Deep
cerebellar nuclei, which are the gateway of cerebellar output, can also
be modulated to fire up to 100+Hz on average130. Despite the fact
that the cerebral cortex and the cerebellum are connected to each
other only by way of polysynaptic projections68,131, numerous
nonprimary sensorimotor (e.g., parietal association, para-
hippocampal, occipitotemporal, and prefrontal) areas of the cerebral
cortex project to the cerebellar cortex via the cortico-ponto-cerebellar
paths132. The isocortical areas that project to specific parts of the
cerebellar cortex via the pons are also the target of efferent projec-
tions from the same cerebellar cortical areas via the thalamus133–135.
These parallel, reciprocally-connected cerebello-isocortical circuits
might provide an anatomical substrate for the correspondence in
functional connectivity gradients between the isocortex and the
cerebellum identified in this study, further supporting a domain-
general view of cerebello-isocortical interaction. The cerebellum also
exhibits monosynaptic or polysynaptic connections with several
subcortical structures that are known to play an important role in
allostasis, including the hypothalamus, periaqueductal gray (PAG),
nucleus of the solitary tract, and amygdala136,137, suggesting a critical
contribution of this structure to predictive regulation of the body.

The hippocampus is thought to generate prediction
signals45,94,97,138,139 and facilitate reweighting of signals in the
isocortex46. Specifically, it may help ensure that the subsequent
prediction signals generated by the internal model of the isocortex

are not slaves to the statistics of the external sensory environment
and instead are more in line with the animal’s goals (i.e., weighted
for the current and predicted conditions of the body’s internal
milieu)46. This mechanism likely draws upon the functional loop
between the hippocampus, the entorhinal cortex, and the isocortex.
Isocortical afferents to the hippocampus carry highly compressed,
multimodal summaries of sensory information via the entorhinal
cortex140, whose Layer II and III project widely to the DG, CA1-
CA4, and the subiculum via the perforant path75,141. Subcortical
projections to the hippocampus include those from the medial
septum, amygdala, anterior thalamic nuclei, supramammillary
nucleus of the hypothalamus, and brainstem nuclei such as the
ventral tegmental area, PAG, and locus coeruleus141,142. By inter-
facing with isocortical ensembles at many levels of the predictive
hierarchy, while receiving rich low-level sensory information from
subcortical structures, the hippocampus, too, may intervene at
multiple points of this hierarchy to modulate cortical signaling.
This hypothesis is consistent with anatomical evidence identifying
projections of CA1 and subiculum to Layer V and VI of the
entorhinal cortex140 as well as widespread multimodal association
areas in the isocortex, including the medial frontal cortex, temporal
pole, orbitofrontal cortex, anterior and posterior cingulate cortices,
parietal and inferotemporal cortices143,144 and to some extent lat-
eral frontal cortex143.

This is warranted by the topographical organization of its
connectivity gradients observed in the current study as well as the
mapping of these gradients to isocortical functional networks42.
Specifically, at the posterior end of the hippocampus (corre-
sponding to the colder colored voxels of hippocampal Gradient 1;
Fig. 1d), intrinsic functional connectivity was stronger with the
isocortical attentional networks; in the middle and anterior por-
tions of the hippocampus (corresponding to the warmer colored
voxels of hippocampal Gradient 1 and Gradient 2), functional
connectivity was stronger with the default mode network in the
isocortex; in the anteriormost portion of the hippocampus (cor-
responding to the colder colored voxels of hippocampal Gradient
2), functional connectivity was stronger with the somatosensory/
motor areas of the isocortex. The attentional-to-default and
default-to-sensorimotor gradients in the hippocampus, therefore,
may characterize the contribution of this structure to predictive
processing in the brain, which involves the refinement of repre-
sentations in the isocortex regardless of whether they are content-
based or modulatory.

Coordinated gradients of connectivity suggest signal exchange
between the cerebellum and the hippocampus, whose interaction
is understudied thus far. Emerging evidence suggests the existence
of a cerebello-hippocampal learning system47–51,145,146, although
its computational and functional architecture are relatively less
well studied when compared with the other learning systems
discussed. Viral tracing studies have so far identified polysynaptic
connections between these structures mediated by regions
including the supramammillary nucleus of the hypothalamus,
medial septum, and ventrolateral/laterodorsal thalamus50,147.
There is also evidence pointing to the existence of direct con-
nections between cerebellar and hippocampal subregions in
humans148. The present findings reinforce the importance of
testing specific hypotheses, for instance, about event segmenta-
tion and sequence processing in which both structures have been
(separately) implicated45,149–153. Future work should investigate
the complementary contributions of cerebello-isocortical, hippo-
campo-isocortical, and cerebello-hippocampal interactions to the
brain’s internal model, which might be characterized by their
dissociable involvement in processing different types of infor-
mation and/or on different timescales.

The present results offer the opportunity to synthesize evidence across
literatures into a common neurocomputational framework based on the
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principles of predictive processing. Our hypotheses, while speculative,
illustrate the value of connectivity gradients in innovating specific ques-
tions about the computational aspects of brain function, with the
association-sensorimotor and representation-modulation gradients as two
common axes of information processing in the brain. Future work might
specifically address these questions and probe modulation of connectivity
gradient coordination across structures by explicit task demands or by
clinical conditions in which neural mechanisms subserving predictive
processing are hypothesized to be dysfunctional154,155. Future workmight
also consider expanding analysis space to the broader subcortex to more
comprehensively take into account its functional organization156,157 and
examine their contribution to predictive processing. If this framework
bears fruit, it has the potential to offer a coherent, neurobiologically-
inspired research program to unite the study of mind and behavior,
collapsing the artificial boundaries between cognitive, perceptual, affective,
motor, and even social phenomena. This evidence might also provide a
common framework for understanding and treating the neurocomputa-
tional basis ofmental disorders, neurodegenerative disorders, and physical
disorders.

Methods
Datasets. We analyzed the fMRI data collected at wakeful rest from 1003 participants
as part of the HCP WU-Minn Consortium52 (Mage= 28.71, SDage= 3.71, 470 males,
533 females; four 15min runs per participant) included in the HCP1200 2017 data
release. All group-level analyses were conducted using the group average preprocessed
whole-brain dense functional connectome (.dconn) data identifying temporal correla-
tions between all cortical vertices and subcortical voxels. For individual-level analyses,
we used preprocessed timeseries (.dtseries) data to derive estimates of functional con-
nectivity, which were averaged across four runs. A full description of the data pre-
processing pipelines implemented by the HCP is discussed elsewhere158,159. Briefly, each
participant’s fMRI data underwent gradient distortion correction, EPI distortion cor-
rection, motion correction, spatial co-registration to structural reference, spatial nor-
malization to template volumetric space, resampling to template surface space,
volumetric and surface smoothing with a 2mmGaussian kernel, and were submitted to
independent component analysis (ICA) for further artifact removal160,161. For inter-
subject registration, feature-based alignment and the Multimodal Surface Matching
Algorithm (MSMAII) were implemented162,163. Prior to the computation of the group
average dense connectome, each dataset was temporally demeaned and had variance
normalization applied164 and submitted to the group-level principal component ana-
lysis (PCA). The output of the group-PCA (the top 4500 weighted spatial eigenvectors)
are then renormalized, eigenvalue-reweighted, and correlated to form the group average
dense connectome data (91,282 × 91,282 entries). We did not perform any further
preprocessing on these data beyond what had already been implemented by the HCP.
Participant recruitment procedures and informed consent forms, including consent to
share de-identified data, were previously approved by the Washington University
Institutional Review Board as part of the HCP.

To validate the findings from the HCP dataset, we additionally analyzed
structural and functional MRI data part of the Brain Genomics Superstruct
Project (GSP). A comprehensive description of the GSP dataset is discussed
elsewhere53,54. Briefly, this dataset includes 1139 participants (Mage= 21.24,
SDage= 2.70, 467 males, 672 females) who had undergone one structural scan
(T1-weighted multi-echo MPRAGE, 1.2 mm isotropic voxels) and two 6 min
functional runs at wakeful rest (gradient-echo EPI sequence, 3 mm isotropic
voxels) using 3 T Siemens Tim Trio Scanners. Participants provided written
informed consent in accordance with guidelines established by the Partners
Health Care Institutional Review Board and the Harvard University Committee
on the Use of Human Subjects in Research.

MRI data preprocessing for the GSP dataset. Each participant’s structural data
underwent intensity normalization, skull stripping, and an automated segmen-
tation of cerebral white matter to locate the gray/white boundary via the Free-
Surfer image analysis suite (v6.0), which is documented and freely available for
download online (http://surfer.nmr.mgh.harvard.edu/). Defects in the surface
topology were corrected165, and the gray/white boundary was deformed outward
using an algorithm designed to obtain an explicit representation of the pial
surface. Each participant’s cortical surface mesh was registered to a common
spherical coordinate system166,167. Preprocessing of functional data was per-
formed using the surface-based pipeline developed by Yeo and colleagues81,168

using a combination of FreeSurfer169, FSL170, and Advanced Normalization
Tools (ANTs)171 routines as well as additional MATLAB functions. This pipe-
line consisted of the following preprocessing steps: Removal of the first four
frames, slice timing correction, motion correction with rigid body translation
and rotation, motion outlier detection, functional-to-structural co-registration
via boundary-based registration172, nuisance regression, interpolation of cen-
sored frames with Lomb-Scargle periodogram173, and band-pass filtering [0.009,

0.08 Hz]. Volumetric data were then projected onto the FreeSurfer
fsaverage6 surface space (~2 mm vertex spacing) followed by surface-
constrained smoothing with a 2 mm Gaussian kernel. Subcortical voxels were
resampled to the MNI152 template space (2 mm isotropic resolution) and
volumetrically smoothed with a 2 mm Gaussian kernel.

We estimated framewise displacement (FD)174 and root-mean-square of
voxel-wise differentiated signal (DVARS)175 using fsl_motion_outliers176.
Volumes with FD >0.2 mm or DVARS >50 were marked as outliers (censored
frames), following the criteria used by previous studies81,168. One frame before
and two frames after these outlier volumes, as well as uncensored segments of
BOLD data lasting fewer than five contiguous volumes, were also flagged as
censored frames177. BOLD runs with more than 50% of the volumes labeled as
censored frames were discarded.

To account for the effect of confounding variables, we performed linear
regression separately for each BOLD run with multiple nuisance regressors,
including (1) a vector of ones and linear trend, (2) six motion parameters, (3)
averaged white matter signal, (4) averaged ventricular signal, along with the first-
order temporal derivatives of (2), (3), and (4). The white matter mask for each
participant was derived from FreeSurfer’s segmentation of their structural image,
followed by three rounds of erosion before resampling to their native BOLD space.
The ventricular mask was obtained similarly, but only with one round of erosion.
In the event that there were fewer than 100 voxels after a round of erosion, no
further erosion was performed. Regression coefficients were computed without
censored frames173. To maintain consistency with the HCP dataset, we resampled
the denoised BOLD timeseries data in the fsaverage6 space to fs_LR 32k space, after
which these surface data were combined with the volumetric data to form a single
whole-brain dense timeseries (.dtseries) file per run.

From the original pool of 1139 participants with two BOLD runs, we discarded
12 participants who had at least one run with more than 50% of the volumes
labeled as censored frames. We additionally discarded 25 participants for whom
surface resampling resulted in fewer vertices/voxels in at least one of the runs than
the rest of the participants. The final GSP dataset analyzed in the current study thus
consisted of 1102 individuals. For each participant, we concatenated the two BOLD
runs and computed Pearson’s correlation coefficient between every pair of vertices/
voxels, which was standardized via Fisher’s r-to-z transformation. Individual-level
Z maps were averaged across all 1102 participants to yield the group’s average
dense connectome data.

Diffusion map embedding. We derived functional connectivity gradients of the
isocortex, the cerebellum, and the hippocampus using diffusion map embedding19,55.
Diffusion map embedding is a nonlinear data dimensionality reduction technique
that enables analysis of similarity structure in functional connectivity patterns in a
large number of data points (e.g., vertices/voxels) by identifying a set of low-
dimensional manifolds (i.e., gradients) capturing principal dimensions of spatial
variation in connectivity. Based on the group average dense connectome data in each
sample, we first derived functional connectivity matrices between (1) all isocortical
vertices (isocortico-isocortical symmetric matrix), (2) all cerebellar voxels and all
isocortical vertices (cerebello-isocortical asymmetric matrix), and (3) all hippocampal
voxels and all isocortical vertices (hippocampo-isocortical asymmetric matrix). We
defined the voxels belonging to the cerebellum and the hippocampus based on a
probabilistic cerebellar atlas178 and the Harvard-Oxford subcortical structural
atlas179,180, respectively, with both thresholded at 50%.

We converted each functional connectivity matrix back to Pearson’s r values
using a hyperbolic tangent function and applied row-wise thresholding to retain
the top 10% connections, with all other connections set to zero. To characterize
the relationship (i.e., similarity) in functional connectivity between a given pair
of isocortical vertices or cerebellar/hippocampal voxels, we computed a non-
negative square symmetric affinity matrix for each functional connectivity
matrix. In keeping with the previous investigations, we opted to use cosine
similarity to characterize the similarity structure in functional connectivity for
the isocortico-isocortical and cerebello-isocortical matrices and normalized
angle similarity for the hippocampo-isocortical matrices42,181. Finally, we used
these affinity matrices as input to diffusion map embedding, which yielded ten
gradients per affinity matrix identifying the dominant dimensions of spatial
variation in isocortical functional connectivity as well as cerebello-isocortical
and hippocampo-isocortical connectivity. In the present study, we focused on
the three most dominant gradients in each structure as similar numbers of
gradients have been emphasized in prior work22,23,25,38,42. Functional
connectivity gradients were derived following the identical procedure for both
the discovery and validation samples. To facilitate the comparison between
samples (e.g., resolving sign indeterminacy of gradients), all connectivity
gradients calculated for the validation sample were aligned to the discovery
sample using Procrustes rotation (number of iterations= 10) prior to analyses.

Statistics and reproducibility. We performed post hoc characterization of the
functional gradients identified via diffusion map embedding at various levels to
interpret their significance. For the hippocampal gradients, we characterized and
compared the distribution of gradient values between major hippocampal subfields.
To do this, we first performed automatic segmentation of hippocampal subfields on
a T1-weighted structural image in the MNI152 space182,183. This procedure

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04796-0 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:401 | https://doi.org/10.1038/s42003-023-04796-0 | www.nature.com/commsbio 9

http://surfer.nmr.mgh.harvard.edu/
www.nature.com/commsbio
www.nature.com/commsbio


generated binary ROIs of the subiculum, CA1–3 and CA4-DG58, which were
subsequently down-sampled to the resolution of functional data. For each of the
isocortical gradients, we characterized the distribution of gradient values across the
seven canonical functional networks of the isocortex54. Here, we adhere to the
original and conventional use of these network labels and color schemes to avoid
confusion, although it is important to realize that both the default mode and
“limbic” networks contain agranular, limbic tissue9,77,86 and “limbic” network
regions often appear within the default mode network77,81.

To interpret the cerebellar and hippocampal gradients in terms of their relations
to the isocortex, we calculated functional connectivity maps between these
structures and the isocortex weighted by their voxel-wise gradient values following
previous studies25,39. For example, to characterize how a given cerebellar gradient
relates to the isocortex, we computed a cerebello-isocortical connectivity map for
each cerebellar voxel and multiplied it by the corresponding gradient value for that
particular voxel. In this way, the pattern of functional connectivity between each
cerebellar voxel and all isocortical vertices was weighted by the position of the voxel
on the cerebellar gradient. These voxel-wise, gradient-weighted cerebello-
isocortical connectivity values were summed over all cerebellar voxels, resulting in
a single isocortical projection of the cerebellar gradient. We repeated this procedure
for each gradient derived for the cerebellum and the hippocampus. To statistically
assess the correspondence between these gradient-weighted functional connectivity
maps of the cerebellum and the hippocampus and isocortical functional
connectivity gradients, we computed vertex-wise Spearman’s rank correlations. We
conducted non-parametric spin tests to derive the statistical significance of each
association while controlling for spatial autocorrelations60. This approach follows
that of prior work investigating the relationships between gradients derived from
histological and functional connectivity features7. Importantly, this method to
compare gradient-weighted functional connectivity of non-isocortical structures
with isocortical functional connectivity gradients is not biased or circular because
these features were not computed based on overlapping connectivity data.

We additionally performed a seed-based functional connectivity analysis to
further clarify the correspondence between the isocortical, cerebellar, and
hippocampal gradients. For this analysis, we first discretized each group-level
functional connectivity gradient into 20 bins following prior approaches using
percentile ranks of vertex-/voxel-wise gradient values184,185. This procedure,
therefore, resulted in 20 spatially-discontiguous bins for a given gradient, each of
which consisted of the same number of vertices or voxels. We computed the mean
timeseries of each gradient bin, which was used to compute Pearson’s correlation
coefficient for a given pair of gradients across structures within each individual
participant. This analysis yielded a 20 × 20 matrix that quantifies the magnitude of
functional connectivity between any given combination of gradient bins for each
pair of gradients. All individual-level functional connectivity estimates were
averaged to yield group-level data for each gradient pair.

For a given pair of non-isocortical (i.e., cerebellar or hippocampal) and
isocortical gradients, we computed a series of Pearson’s correlation coefficients
using estimates of functional connectivity calculated above. For instance, for
each gradient bin generated from a non-isocortical gradient, we computed the
Pearson’s correlation coefficients between isocortical gradient bin indices (bin
1–20) and functional connectivity values between the non-isocortical gradient
bin and all isocortical gradient bins. Repeating this step for all non-isocortical
gradient bins, we obtained 20 Pearson’s r values representing how functional
connectivity with the 20 isocortical gradient bins changes as a function of 20
non-isocortical gradient bins. In the final step, we calculated the Pearson’s r
value between these 20 Pearson’s r values indexing connectivity changes along a
non-isocortical gradient and non-isocortical gradient bin indices (bin 1–20).
This procedure yielded one correlation coefficient for each pair of non-
isocortical and isocortical gradients quantifying how these gradients relate to
each other based on functional connectivity. The gradient-weighted connectivity
approach described above reveals the degree of the spatial association at a global
level; the seed-based connectivity analysis described here complements that
approach by quantifying the magnitude of the linear relationship between a
given pair of gradients by taking into account their connectivity structure at a
more precise level.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The HCP dataset is publicly available at https://db.humanconnectome.org. The GSP
dataset is publicly available at https://dataverse.harvard.edu/dataset.xhtml?persistentId=
doi:10.7910/DVN/25833. Source data use to generate Fig. 1a and Fig. 1c are freely
available online186.

Code availability
All code used for data analyses in this study are freely available online186.
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